A Protein Complex Network of Drosophila melanogaster

Determining the composition of protein complexes is an essential step toward understanding the cell as an integrated system. Using coaffinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly 5,000 individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a statistical framework designed to define individual protein-protein interactions, led to the generation of a Drosophila protein interaction map (DPiM) encompassing 556 protein complexes. The high quality of the DPiM and its usefulness as a paradigm for metazoan proteomes are apparent from the recovery of many known complexes, significant enrichment for shared functional attributes, and validation in human cells. The DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. The DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution.

[1]  F. Graham,et al.  Characteristics of a human cell line transformed by DNA from human adenovirus type 5. , 1977, The Journal of general virology.

[2]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[3]  Michael K. Coleman,et al.  Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. , 2006, Journal of proteome research.

[4]  H. Ploegh,et al.  Multiple associated proteins regulate proteasome structure and function. , 2002, Molecular cell.

[5]  W. Baumeister,et al.  The Regulatory Complex of Drosophila melanogaster 26s Proteasomes , 2000, The Journal of cell biology.

[6]  E. F. da Cruz e Silva,et al.  Drosophila contains three genes that encode distinct isoforms of protein phosphatase 1. , 1990, European journal of biochemistry.

[7]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[8]  P. Bork,et al.  Evolution of biomolecular networks — lessons from metabolic and protein interactions , 2009, Nature Reviews Molecular Cell Biology.

[9]  Elke Krüger,et al.  The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum , 2007, EMBO reports.

[10]  Erik L. L. Sonnhammer,et al.  InParanoid 7: new algorithms and tools for eukaryotic orthology analysis , 2009, Nucleic Acids Res..

[11]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..

[12]  L. Goldstein,et al.  Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. , 1988, Nucleic acids research.

[13]  Z. Weng,et al.  Structure, function, and evolution of transient and obligate protein-protein interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Hans-Werner Mewes,et al.  CORUM: the comprehensive resource of mammalian protein complexes , 2007, Nucleic Acids Res..

[15]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[16]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[17]  T. Moore,et al.  Human ORFeome version 1.1: a platform for reverse proteomics. , 2004, Genome research.

[18]  Bernardo A Mangiola,et al.  A Drosophila protein-interaction map centered on cell-cycle regulators , 2004, Genome Biology.

[19]  A. Emili,et al.  Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins , 2009, PLoS biology.

[20]  Antoine M. van Oijen,et al.  Real-time single-molecule observation of rolling-circle DNA replication , 2009, Nucleic acids research.

[21]  M. MacCoss,et al.  A fast SEQUEST cross correlation algorithm. , 2008, Journal of proteome research.

[22]  J. Kato,et al.  Mammalian COP9 signalosome , 2009, Genes to cells : devoted to molecular & cellular mechanisms.

[23]  Maitreya J. Dunham,et al.  Identification of Aneuploidy-Tolerating Mutations , 2010, Cell.

[24]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[25]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[26]  David Osumi-Sutherland,et al.  FlyBase: enhancing Drosophila Gene Ontology annotations , 2008, Nucleic Acids Res..

[27]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[28]  S. Pu,et al.  Up-to-date catalogues of yeast protein complexes , 2008, Nucleic acids research.

[29]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[30]  G. Casari,et al.  A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. , 2004, Nature cell biology.

[31]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[32]  A. Bauer,et al.  Analyzing protein complexes in Drosophila with tandem affinity purification–mass spectrometry , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[33]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[34]  Stephen Guest,et al.  DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila , 2010, Nucleic Acids Res..

[35]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[36]  K. Oegema,et al.  MVB-12, a Fourth Subunit of Metazoan ESCRT-I, Functions in Receptor Downregulation , 2007, PloS one.

[37]  A. Kimura,et al.  New look inside the spindle: microtubule-dependent microtubule generation within the spindle. , 2010, Current opinion in cell biology.

[38]  Guozhen Liu,et al.  DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions , 2008, BMC Genomics.

[39]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[40]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[41]  Dieter A Wolf,et al.  Conservation of the COP9/signalosome in budding yeast , 2002, BMC Genetics.

[42]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[43]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[44]  Steven P Gygi,et al.  The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry , 2008, Nature Protocols.

[45]  Insuk Lee,et al.  A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality , 2007, BMC Bioinformatics.

[46]  R. Legouis,et al.  Developmental and cellular functions of the ESCRT machinery in pluricellular organisms , 2010, Biology of the cell.

[47]  Anne-Claude Gavin,et al.  Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. , 2011, Current opinion in biotechnology.

[48]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Belote,et al.  Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis , 2009, Heredity.

[50]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[51]  L. Alphey,et al.  Towards a comprehensive analysis of the protein phosphatase 1 interactome in Drosophila. , 2006, Journal of molecular biology.

[52]  Peter R. Baker,et al.  Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. , 2007, Biochemistry.

[53]  S. Wuchty Evolution and topology in the yeast protein interaction network. , 2004, Genome research.

[54]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[55]  Susan L. Forsburg,et al.  Eukaryotic MCM Proteins: Beyond Replication Initiation , 2004, Microbiology and Molecular Biology Reviews.

[56]  Andrew Emili,et al.  Identifying functional modules in the physical interactome of Saccharomyces cerevisiae , 2007, Proteomics.

[57]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[58]  C. Will,et al.  Spliceosome structure and function. , 2011, Cold Spring Harbor perspectives in biology.

[59]  Nihon Hassei Seibutsu Gakkai,et al.  Genes to cells , 1996 .

[60]  Henning Urlaub,et al.  Conservation of the Protein Composition and Electron Microscopy Structure of Drosophila melanogaster and Human Spliceosomal Complexes , 2008, Molecular and Cellular Biology.

[61]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  B. Graveley The developmental transcriptome of Drosophila melanogaster , 2010, Nature.

[63]  K. Noguchi,et al.  Structure and function of archaeal prefoldin, a co-chaperone of group II chaperonin. , 2010, Frontiers in bioscience.

[64]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[65]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[66]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[67]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[68]  Irina M. Armean,et al.  In Vivo Analysis of Proteomes and Interactomes Using Parallel Affinity Capture (iPAC) Coupled to Mass Spectrometry* , 2011, Molecular & Cellular Proteomics.

[69]  Gary D Bader,et al.  Analyzing yeast protein–protein interaction data obtained from different sources , 2002, Nature Biotechnology.

[70]  Simon Rogers,et al.  Prognostic classification of relapsing favorable histology Wilms tumor using cDNA microarray expression profiling and support vector machines , 2004, Genes, chromosomes & cancer.

[71]  A. Ishimoto,et al.  Identification and Characterization of a Novel Line ofDrosophila Schneider S2 Cells That Respond to Wingless Signaling* , 1998, The Journal of Biological Chemistry.

[72]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[73]  J. Rogers,et al.  hORFeome v3.1: A resource of human open reading frames representing over 10,000 human genes , 2007, Genomics.

[74]  Berend Snel,et al.  Protein Complex Evolution Does Not Involve Extensive Network Rewiring , 2008, PLoS Comput. Biol..

[75]  Dmitrij Frishman,et al.  MIPS: analysis and annotation of proteins from whole genomes in 2005 , 2005, Nucleic Acids Res..

[76]  Tijana Milenkovic,et al.  Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis , 2008, Proceedings of the National Academy of Sciences.

[77]  Gerry Shaw,et al.  Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[78]  M. Gerstein,et al.  Relating whole-genome expression data with protein-protein interactions. , 2002, Genome research.

[79]  Shiri Freilich,et al.  The COP9 signalosome is essential for development of Drosophila melanogaster , 1999, Current Biology.

[80]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[81]  Zhaohui S. Qin,et al.  A Global Protein Kinase and Phosphatase Interaction Network in Yeast , 2010, Science.

[82]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[83]  M. Villarino 91.24 The probability of a run , 2005, The Mathematical Gazette.

[84]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[85]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[86]  Hyungwon Choi,et al.  SAINT: Probabilistic Scoring of Affinity Purification - Mass Spectrometry Data , 2010, Nature Methods.

[87]  M. Baker,et al.  Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing. , 2008, Journal of proteome research.

[88]  S. Celniker,et al.  Development of expression-ready constructs for generation of proteomic libraries. , 2011, Methods in molecular biology.

[89]  Li Yang,et al.  The transcriptional diversity of 25 Drosophila cell lines. , 2011, Genome research.