Anisotropic nonlinear diffusion in flow visualization

Vector field visualization is an important topic in scientific visualization. Its aim is to graphically represent field data in an intuitively understandable and precise way. Here a new approach based on anisotropic nonlinear diffusion is introduced. It enables an easy perception of flow data and serves as an appropriate scale space method for the visualization of complicated flow patterns. The approach is closely related to nonlinear diffusion methods in image analysis where images are smoothed while still retaining and enhancing edges. An initial noisy image is smoothed along streamlines, whereas the image is sharpened in the orthogonal direction. The method is based on a continuous model and requires the solution of a parabolic PDE problem. It is discretized only in the final implementational step. Therefore, many important qualitative aspects can already be discussed on a continuous level. Applications are shown in 2D and 3D and the provisions for flow segmentation are outlined.

[1]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[2]  Hans-Christian Hege,et al.  Fast Display of Illuminated Field Lines , 1997, IEEE Trans. Vis. Comput. Graph..

[3]  Martin Rumpf,et al.  Visualization of Time-Dependent Velocity Fields by Texture Transport , 1998, Visualization in Scientific Computing.

[4]  Martin Rumpf,et al.  Visualization of Time-Dependent Velocity Fields by Texture Transport , 1998 .

[5]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[6]  Jarke J. van Wijk,et al.  Enhanced Spot Noise for Vector Field Visualization , 1995, IEEE Visualization.

[7]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[8]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[9]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  J. V. van Wijk Flow visualization with surface particles , 1993, IEEE Computer Graphics and Applications.

[12]  Victoria Interrante,et al.  Strategies for effectively visualizing 3D flow with volume LIC , 1997 .

[13]  J. Kacur,et al.  Solution of nonlinear diffusion appearing in image smoothing and edge detection , 1995 .

[14]  J. V. van Wijk,et al.  Implicit stream surfaces , 1993, Proceedings Visualization '93.

[15]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.

[16]  Victoria Interrante,et al.  Strategies for effectively visualizing 3D flow with volume LIC , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[17]  Jarke J. van Wijk Flow visualization with surface particles , 1993, IEEE Computer Graphics and Applications.

[18]  Nelson Max,et al.  Flow visualization using moving textures , 1995 .

[19]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[20]  Bernd Kawohl,et al.  Maximum and comparison principle for one-dimensional anisotropic diffusion , 1998 .

[21]  Jarke J. van Wijk Implicit Stream Surfaces , 1993, IEEE Visualization.

[22]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[23]  David C. Banks,et al.  Multi-frequency noise for LIC , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[24]  David L. Kao,et al.  UFLIC: a line integral convolution algorithm for visualizing unsteady flows , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[25]  David L. Kao,et al.  UFLIC: a line integral convolution algorithm for visualizing unsteady flows , 1997 .

[26]  Nelson L. Max,et al.  Visualizing 3D velocity fields near contour surfaces , 1994, Proceedings Visualization '94.