The LSST Era of Supermassive Black Hole Accretion Disk Reverberation Mapping

The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will detect an unprecedentedly large sample of actively accreting supermassive black holes with typical accretion disk (AD) sizes of a few light days. This brings us to face challenges in the reverberation mapping (RM) measurement of AD sizes in active galactic nuclei using interband continuum delays. We examine the effect of LSST cadence strategies on AD RM using our metric AGN_TimeLagMetric. It accounts for redshift, cadence, the magnitude limit, and magnitude corrections for dust extinction. Running our metric on different LSST cadence strategies, we produce an atlas of the performance estimations for LSST photometric RM measurements. We provide an upper limit on the estimated number of quasars for which the AD time lag can be computed within 0 < z < 7 using the features of our metric. We forecast that the total counts of such objects will increase as the mean sampling rate of the survey decreases. The AD time lag measurements are expected for >1000 sources in each deep drilling field (DDF; (10 deg2)) in any filter, with the redshift distribution of these sources peaking at z ≈ 1. We find the LSST observation strategies with a good cadence (≲5 days) and a long cumulative season (∼9 yr), as proposed for LSST DDF, are favored for the AD size measurement. We create synthetic LSST light curves for the most suitable DDF cadences and determine RM time lags to demonstrate the impact of the best cadences based on the proposed metric.

[1]  B. Luo,et al.  Spectral Energy Distributions in Three Deep-drilling Fields of the Vera C. Rubin Observatory Legacy Survey of Space and Time: Source Classification and Galaxy Properties , 2022, The Astrophysical Journal Supplement Series.

[2]  Chih-Wei L. Huang,et al.  First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole , 2022, The Astrophysical Journal Letters.

[3]  M. Guainazzi,et al.  Do radio active galactic nuclei reflect X-ray binary spectral states? , 2022, Astronomy &amp; Astrophysics.

[4]  C. Kochanek,et al.  Using AGN lightcurves to map accretion disc temperature fluctuations , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  M. Graham,et al.  Examining AGN UV/Optical Variability beyond the Simple Damped Random Walk , 2022, The Astrophysical Journal.

[6]  L. Ho,et al.  Accretion Disk Size Measurements of Active Galactic Nuclei Monitored by the Zwicky Transient Facility , 2022, The Astrophysical Journal.

[7]  Astrophysics,et al.  Correction to: Optical variability of quasars with 20-year photometric light curves , 2022, Monthly notices of the Royal Astronomical Society.

[8]  I. Andreoni,et al.  Give Me a Few Hours: Exploring Short Timescales in Rubin Observatory Cadence Simulations , 2021, The Astrophysical Journal Supplement Series.

[9]  Photoreverberation mapping of quasars in the context of Legacy Survey of Space and Time observing strategies , 2021, Astronomische Nachrichten.

[10]  G. Richards,et al.  Blazar Variability with the Vera C. Rubin Legacy Survey of Space and Time , 2021, The Astrophysical Journal Supplement Series.

[11]  I. Jankov,et al.  Conditional Neural Process for nonparametric modeling of active galactic nuclei light curves , 2021, Astronomische Nachrichten.

[12]  H. Netzer Continuum reverberation mapping and a new lag-luminosity relationship for AGN , 2021, 2110.05512.

[13]  Xin Liu,et al.  A characteristic optical variability time scale in astrophysical accretion disks , 2021, Science.

[14]  A. Mahabal,et al.  Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design , 2021, The Astrophysical Journal Supplement Series.

[15]  I. Jankov,et al.  On possible proxies of AGN light-curves cadence selection in future time domain surveys , 2021, 2105.14889.

[16]  P. Hall,et al.  AGN STORM 2. I. First results: A Change in the Weather of Mrk 817 , 2021, The Astrophysical Journal.

[17]  A. Edge,et al.  Constraining the AGN duty cycle in the cool-core cluster MS 0735.6+7421 with LOFAR data , 2021, Astronomy & Astrophysics.

[18]  I. Papadakis,et al.  Modelling the UV/optical continuum time-lags in AGN , 2021, 2103.04892.

[19]  Maria E. S. Pereira,et al.  OzDES Reverberation Mapping Program: Lag recovery reliability for 6-year CIV analysis , 2021, 2101.06921.

[20]  A. King,et al.  High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion , 2021, 2101.00209.

[21]  Ž. Ivezić,et al.  Improving Damped Random Walk Parameters for SDSS Stripe 82 Quasars with Pan-STARRS1 , 2020, 2012.12907.

[22]  M. Radovich,et al.  A random forest-based selection of optically variable AGN in the VST-COSMOS field , 2020, Astronomy & Astrophysics.

[23]  OUP accepted manuscript , 2021, Publications of the Astronomical Society of Japan.

[24]  Weixiang Yu LSST AGN SC Cadence Note: Non-Parametric Structure Function Metric , 2021 .

[25]  R. Assef LSST AGN SC Cadence Note: Type-1 Quasar Colors in the Context of Photometric Redshifts , 2021 .

[26]  P. Hopkins,et al.  Cosmological Simulations of Quasar Fueling to Subparsec Scales Using Lagrangian Hyper-refinement , 2020, 2008.12303.

[27]  H. Tak,et al.  Modeling Stochastic Variability in Multiband Time-series Data , 2020, The Astronomical Journal.

[28]  S. Tsygankov,et al.  A flare in the optical spotted in the changing-look Seyfert NGC 3516 , 2020, Astronomy & Astrophysics.

[29]  Ashish A. Mahabal,et al.  Deep Modeling of Quasar Variability , 2020, The Astrophysical Journal.

[30]  G. Richards,et al.  The bolometric quasar luminosity function at z = 0–7 , 2020, Monthly Notices of the Royal Astronomical Society.

[31]  F. Courbin,et al.  Twisted quasar light curves: implications for continuum reverberation mapping of accretion disks , 2019, Astronomy & Astrophysics.

[32]  J. Frieman,et al.  Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields , 2018, The Astrophysical Journal Supplement Series.

[33]  J. Pott,et al.  Optical continuum photometric reverberation mapping of the Seyfert-1 galaxy Mrk509 , 2019, Monthly Notices of the Royal Astronomical Society.

[34]  M. Zajaček,et al.  Current and Future Applications of Reverberation-Mapped Quasars in Cosmology , 2019, Front. Astron. Space Sci..

[35]  A. Graham,et al.  Revealing Hidden Substructures in the MBH–σ Diagram, and Refining the Bend in the L–σ Relation , 2019, The Astrophysical Journal.

[36]  Hongyan Zhou,et al.  A Comprehensive and Uniform Sample of Broad-line Active Galactic Nuclei from the SDSS DR7 , 2019, The Astrophysical Journal Supplement Series.

[37]  J. Rhodes,et al.  Mini-survey of the northern sky to Dec <+30 , 2019, 1904.10438.

[38]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[39]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. X. Optical Variability Characteristics , 2019, The Astrophysical Journal.

[40]  U. M. Noebauer,et al.  Strongly lensed SNe Ia in the era of LSST: observing cadence for lens discoveries and time-delay measurements , 2019, Astronomy & Astrophysics.

[41]  P. T. de Zeeuw,et al.  Six new supermassive black hole mass determinations from adaptive-optics assisted SINFONI observations , 2019, Astronomy & Astrophysics.

[42]  W. Brandt,et al.  The First Swift Intensive AGN Accretion Disk Reverberation Mapping Survey , 2018, The Astrophysical Journal.

[43]  Hyun-Jin Bae,et al.  Discovery of Dying Active Galactic Nucleus in Arp 187: Experience of Drastic Luminosity Decline within 104 yr , 2018, The Astrophysical Journal.

[44]  L. Ho,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: Accretion Disk Sizes from Continuum Lags , 2018, The Astrophysical Journal.

[45]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[46]  A. Graham,et al.  Black Hole Mass Scaling Relations for Early-type Galaxies. I. MBH–M*,sph and MBH–M*,gal , 2019 .

[47]  V. Lipunov,et al.  New changing look case in NGC 1566 , 2018, Monthly Notices of the Royal Astronomical Society.

[48]  T. Paumard,et al.  Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale , 2018, Nature.

[49]  K. Korista,et al.  Quantifying the diffuse continuum contribution of BLR Clouds to AGN Continuum Inter-band Delays , 2018, Monthly Notices of the Royal Astronomical Society.

[50]  L. Ho,et al.  The QUEST–La Silla AGN Variability Survey: Connection between AGN Variability and Black Hole Physical Properties , 2018, The Astrophysical Journal.

[51]  R. Haftka,et al.  Similarity measures for identifying material parameters from hysteresis loops using inverse analysis , 2018, International Journal of Material Forming.

[52]  J. Kuraszkiewicz,et al.  Modeling of the Quasar Main Sequence in the Optical Plane , 2018, The Astrophysical Journal.

[53]  M. Malkan,et al.  The Kepler Light Curves of AGN: A Detailed Analysis , 2018, 1803.06436.

[54]  Adam Ingram,et al.  Multi-time-scale X-ray reverberation mapping of accreting black holes , 2018, 1801.03100.

[55]  N. E. Sommer,et al.  Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey , 2017, The Astrophysical Journal.

[56]  G. Calderone,et al.  How to constrain mass and spin of supermassive black holes through their disk emission , 2017, 1702.00011.

[57]  K. Korista,et al.  Accretion Disk Reverberation with Hubble Space Telescope Observations of NGC 4593: Evidence for Diffuse Continuum Lags , 2017, 1712.04025.

[58]  R. Morganti Archaeology of active galaxies across the electromagnetic spectrum , 2017 .

[59]  N. Gehrels,et al.  Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing , 2017, 1703.06901.

[60]  S. Lilly,et al.  OPTICAL VARIABILITY OF AGNs IN THE PTF/iPTF SURVEY , 2016, 1611.03082.

[61]  H. Rix,et al.  Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves , 2016, 1612.08747.

[62]  S. Kozłowski,et al.  Limitations on the recovery of the true AGN variability parameters using Damped Random Walk modeling , 2016, 1611.08248.

[63]  D. N. Okhmat,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT.VI. REVERBERATING DISK MODELS FOR NGC 5548 , 2016, 1611.06051.

[64]  P. Giommi,et al.  Active galactic nuclei: what’s in a name? , 2017, The Astronomy and Astrophysics Review.

[65]  Michael A. Reuter,et al.  Simulating the LSST OCS for conducting survey simulations using the LSST scheduler , 2016, Astronomical Telescopes + Instrumentation.

[66]  Keith Horne,et al.  Accretion disc time lag distributions: applying CREAM to simulated AGN light curves , 2015, 1511.06162.

[67]  Astronomy,et al.  Gravitational Lensing Size Scales for Quasars , 2015, 1509.05375.

[68]  Manda Banerji,et al.  Simulations of the OzDES AGN reverberation mapping project , 2015, 1504.03031.

[69]  K. Hodapp,et al.  The broad-line region and dust torus size of the Seyfert 1 galaxy PGC 50427 , 2015, 1502.06771.

[70]  Andrew J. Connolly,et al.  An end-to-end simulation framework for the Large Synoptic Survey Telescope , 2014, Astronomical Telescopes and Instrumentation.

[71]  Andrew J. Connolly,et al.  The LSST metrics analysis framework (MAF) , 2014, Astronomical Telescopes and Instrumentation.

[72]  T. Dwelly,et al.  Swift monitoring of NGC 5548: X-ray reprocessing and short-term UV/optical variability , 2014, 1407.6361.

[73]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[74]  A. Fabian,et al.  The curious time lags of PG 1244+026: discovery of the iron K reverberation lag. , 2013, 1311.5164.

[75]  H. Netzer The Physics and Evolution of Active Galactic Nuclei , 2013 .

[76]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XI. Techniques for time delay measurement in presence of microlensing , 2012, 1208.5598.

[77]  C. Westhues,et al.  Photometric AGN reverberation mapping – an efficient tool for BLR sizes, black hole masses, and host-subtracted AGN luminosities , 2011, 1109.1848.

[78]  Western Michigan University,et al.  The near‐infrared broad emission line region of active galactic nuclei – II. The 1‐μm continuum , 2011, 1101.3342.

[79]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2010, 1006.5178.

[80]  A. Fabian,et al.  Optical-to-X-ray emission in low-absorption AGN: results from the Swift–BAT 9-month catalogue , 2009, 0907.2272.

[81]  H. T. Liu,et al.  Tests for Standard Accretion Disk Models by Variability in Active Galactic Nuclei , 2008, 0803.0356.

[82]  H. Winkler,et al.  Testing thermal reprocessing in active galactic nuclei accretion discs , 2007, 0706.1464.

[83]  P. Schechter,et al.  X-Ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars. I. Zooming in on Quasar Emission Regions , 2006, astro-ph/0607655.

[84]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[85]  J. Poutanen,et al.  Pulse profiles of millisecond pulsars and their Fourier amplitudes , 2006, astro-ph/0608663.

[86]  P. Schechter,et al.  A Strong X-Ray Flux Ratio Anomaly in the Quadruply Lensed Quasar PG 1115+080 , 2006, astro-ph/0604152.

[87]  P. Hopkins,et al.  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[88]  S. G. Sergeev,et al.  Lag-Luminosity Relationship for Interband Lags between Variations in B, V, R, and I Bands in Active Galactic Nuclei , 2005 .

[89]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[90]  Andrew King,et al.  Accretion Power in Astrophysics: Third Edition , 2002 .

[91]  K. Korista,et al.  The Variable Diffuse Continuum Emission of Broad-Line Clouds , 2001, astro-ph/0101117.

[92]  P. Marziani,et al.  THE BROAD LINE REGION IN ACTIVE GALACTIC NUCLEI , 2000, astro-ph/0002096.

[93]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[94]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[95]  L. Eyer,et al.  VARIABLE STARS : WHICH NYQUIST FREQUENCY? , 1998, astro-ph/9808176.

[96]  L. Ho,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIII. Ultraviolet Observations of the Broad-Line Radio Galaxy 3C 390.3 , 1998, astro-ph/9806216.

[97]  Bradley M. Peterson,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469 , 1998 .

[98]  L. Stella,et al.  Reverberation by a relativistic accretion disc , 1994, astro-ph/9409049.

[99]  C. Gaskell,et al.  Structure and kinematics of the broad-line regions in active galaxies from IUE variability data , 1991 .

[100]  M. Malkan,et al.  Fitting improved accretion disk models to the multiwavelength continua of quasars and active galactic nuclei , 1989 .

[101]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[102]  B. Peterson,et al.  The Accuracy of Cross-Correlation Estimates of Quasar Emission-Line Region Sizes , 1987 .

[103]  D. H. Roberts,et al.  Time Series Analysis with Clean - Part One - Derivation of a Spectrum , 1987 .

[104]  C. M. Gaskell,et al.  Line variations in quasars and Seyfert galaxies , 1986 .

[105]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[106]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[107]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[108]  R. Rosner,et al.  Structured coronae of accretion disks , 1979 .

[109]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[110]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[111]  Allan Sandage,et al.  OPTICAL IDENTIFICATION OF 3C 48, 3C 196, AND 3C 286 WITH STELLAR OBJECTS , 1963 .

[112]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.