Generating chaotic attractors on a surface

Abstract: The present paper introduces a new method to generate several independent periodic attractors, based on a switching piecewise-constant controller. We demonstrate here that the state space equidistant repartition of these attractors is on an arbitrarily precise zone of a paraboloid or plane. We determine the state space domains where the attractors are generated from different initial conditions. A mathematical formula giving their maximal number in function of the controller piecewise-constant values is then deduced.

[1]  Lars Petter Endresen,et al.  Limit cycle oscillations in pacemaker cells , 2000, IEEE Transactions on Biomedical Engineering.

[2]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[3]  C. Morel,et al.  A new technique to generate independent periodic attractors in the state space of nonlinear dynamic systems , 2009 .

[4]  Henry Leung,et al.  Design and implementation of n-scroll chaotic attractors from a general jerk circuit , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Xinghuo Yu,et al.  Anticontrol of chaos in continuous-time systems via time-delay feedback. , 2000, Chaos.

[6]  Michal Fečkan,et al.  Topological Degree Approach to Bifurcation Problems , 2008 .

[7]  Mingshu Peng,et al.  Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model , 2004 .

[8]  Grzegorz Litak,et al.  Synchronisation and Chaos in a Parametrically and Self-Excited System with Two Degrees of Freedom , 2000 .

[9]  Rastislav Lukac,et al.  Bit-level based secret sharing for image encryption , 2005, Pattern Recognition.

[10]  Jin Bae Park,et al.  Generating Chaos via Feedback Control from a Stable TS Fuzzy System through a sinusoidal Nonlinearity , 2002, Int. J. Bifurc. Chaos.

[11]  Guanrong Chen,et al.  Generating chaotic attractors with multiple merged basins of attraction: a switching piecewise-linear control approach , 2003 .

[12]  Michael Peter Kennedy,et al.  Three steps to chaos. I. Evolution , 1993 .

[13]  Cristina Morel,et al.  Improvement of Power Supply Electromagnetic Compatibility by Extension of Chaos Anticontrol , 2005, J. Circuits Syst. Comput..

[14]  Claude-Henri Lamarque,et al.  Bifurcation and Chaos in Nonsmooth Mechanical Systems , 2003 .

[15]  Hirokazu Fujisaka,et al.  Chaotic phase synchronization and phase diffusion , 2005 .

[16]  Guanrong Chen,et al.  A switching scheme for synthesizing attractors of dissipative chaotic systems , 2008, Appl. Math. Comput..

[17]  Michael Peter Kennedy Three Steps to Chaos-Part I: Evolution , 1993 .

[18]  Gamal M. Mahmoud,et al.  Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system , 2007 .

[19]  Guanrong Chen,et al.  Generating chaos with a switching piecewise-linear controller. , 2002, Chaos.

[20]  Mingshu Peng Symmetry breaking, bifurcations, periodicity and chaos in the Euler method for a class of delay differential equations , 2005 .

[21]  Cristina Morel,et al.  Anticontrol of Chaos Reduces Spectral Emissions , 2008 .

[22]  Peter Ashwin,et al.  Calculation of the periodic spectral components in a chaotic DC-DC converter , 1999 .

[23]  Gonzalo Álvarez,et al.  Breaking two secure communication systems based on chaotic masking , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Mingshu Peng,et al.  The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximation of delay-differential equations ☆ , 2004 .

[25]  Guanrong Chen,et al.  Generation of n-scroll attractors via sine function , 2001 .

[26]  F. Chapeau-Blondeau,et al.  Generating independent chaotic attractors by chaos anticontrol in nonlinear circuits , 2005 .