Solving Conic Systems via Projection and Rescaling

We propose a simple projection and rescaling algorithm to solve the feasibility problem $$\begin{aligned} \text { find } x \in L \cap \Omega , \end{aligned}$$findx∈L∩Ω,where L and $$\Omega $$Ω are respectively a linear subspace and the interior of a symmetric cone in a finite-dimensional vector space V. This projection and rescaling algorithm is inspired by previous work on rescaled versions of the perceptron algorithm and by Chubanov’s projection-based method for linear feasibility problems. As in these predecessors, each main iteration of our algorithm contains two steps: a basic procedure and a rescaling step. When $$L \cap \Omega \ne \emptyset $$L∩Ω≠∅, the projection and rescaling algorithm finds a point $$x \in L \cap \Omega $$x∈L∩Ω in at most $$\mathcal {O}(\log (1/\delta (L \cap \Omega )))$$O(log(1/δ(L∩Ω))) iterations, where $$\delta (L \cap \Omega ) \in (0,1]$$δ(L∩Ω)∈(0,1] is a measure of the most interior point in $$L \cap \Omega $$L∩Ω. The ideal value $$\delta (L\cap \Omega ) = 1$$δ(L∩Ω)=1 is attained when $$L \cap \Omega $$L∩Ω contains the center of the symmetric cone $$\Omega $$Ω. We describe several possible implementations for the basic procedure including a perceptron scheme and a smooth perceptron scheme. The perceptron scheme requires $$\mathcal {O}(r^4)$$O(r4) perceptron updates and the smooth perceptron scheme requires $$\mathcal {O}(r^2)$$O(r2) smooth perceptron updates, where r stands for the Jordan algebra rank of V.

[1]  Santosh S. Vempala,et al.  A simple polynomial-time rescaling algorithm for solving linear programs , 2008, Math. Program..

[2]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[3]  Javier Peña,et al.  A deterministic rescaled perceptron algorithm , 2016, Math. Program..

[4]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[5]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[6]  Martin Jaggi,et al.  On the Global Linear Convergence of Frank-Wolfe Optimization Variants , 2015, NIPS.

[7]  Javier F. Pena,et al.  A Primal–Dual Smooth Perceptron–von Neumann Algorithm , 2013 .

[8]  Jesús A. De Loera,et al.  On Chubanov's Method for Linear Programming , 2012, INFORMS J. Comput..

[9]  Kees Roos,et al.  An improved version of Chubanov's method for solving a homogeneous feasibility problem , 2018, Optim. Methods Softw..

[10]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[11]  Javier Peña,et al.  Some preconditioners for systems of linear inequalities , 2014, Optim. Lett..

[12]  Robert M. Freund,et al.  A New Condition Measure, Preconditioners, and Relations Between Different Measures of Conditioning for Conic Linear Systems , 2002, SIAM J. Optim..

[13]  T. Terlaky,et al.  A Polynomial Column-wise Rescaling von Neumann Algorithm , 2015 .

[14]  Robert M. Freund,et al.  Condition number complexity of an elementary algorithm for computing a reliable solution of a conic linear system , 2000, Math. Program..

[15]  Shimrit Shtern,et al.  Linearly convergent away-step conditional gradient for non-strongly convex functions , 2015, Mathematical Programming.

[16]  Michel Baes,et al.  Spectral Functions and Smoothing Techniques on Jordan Algebras: How algebraic techniques can help to design efficient optimization algorithms , 2009 .

[17]  Peng Sun,et al.  Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids , 2008, Optim. Methods Softw..

[18]  Javier Peña,et al.  A Smooth Perceptron Algorithm , 2012, SIAM J. Optim..

[19]  Farid Alizadeh,et al.  Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones , 2001, Math. Oper. Res..

[20]  Sergei Chubanov A strongly polynomial algorithm for linear systems having a binary solution , 2012, Math. Program..

[21]  Santosh S. Vempala,et al.  An Efficient Re-Scaled Perceptron Algorithm for Conic Systems , 2006, Math. Oper. Res..

[22]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[23]  Javier Peña,et al.  On the von Neumann and Frank-Wolfe Algorithms with Away Steps , 2016, SIAM J. Optim..

[24]  Sergei Chubanov,et al.  A polynomial projection algorithm for linear feasibility problems , 2015, Math. Program..

[25]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.