A REVERSE SHOCK IN GRB 130427A

We present extensive radio and millimeter observations of the unusually bright GRB 130427A at z = 0.340, spanning 0.67-12 days after the burst. We combine these data with detailed multi-band UV, optical, NIR, and Swift X-ray observations and find that the broadband afterglow emission is composed of distinct reverse shock and forward shock contributions. The reverse shock emission dominates in the radio/millimeter and at 0.1 days in the UV/optical/NIR, while the forward shock emission dominates in the X-rays and at 0.1 days in the UV/optical/NIR. We further find that the optical and X-ray data require a wind circumburst environment, pointing to a massive star progenitor. Using the combined forward and reverse shock emission, we find that the parameters of the burst include an isotropic kinetic energy of E K, iso 2 × 1053 erg, a mass loss rate of M ☉ yr–1 (for a wind velocity of 1000 km s–1), and a Lorentz factor at the deceleration time of Γ(200 s) 130. Due to the low density and large isotropic energy, the absence of a jet break to 15 days places only a weak constraint on the opening angle, θj 2.°5, and therefore a total energy of E γ + EK 1.2 × 1051 erg, similar to other gamma-ray bursts (GRBs). The reverse shock emission is detectable in this burst due to the low circumburst density, which leads to a slow cooling shock. We speculate that this property is required for the detectability of reverse shocks in radio and millimeter bands. Following on GRB 130427A as a benchmark event, observations of future GRBs with the exquisite sensitivity of the Very Large Array and ALMA, coupled with detailed modeling of the reverse and forward shock contributions, will test this hypothesis.

[1]  B. J. Butler,et al.  THE EXPANDED VERY LARGE ARRAY: A NEW TELESCOPE FOR NEW SCIENCE , 2011, 1106.0532.

[2]  Zhi-Yun Li,et al.  The Diversity of Gamma-Ray Burst Afterglows and the Surroundings of Massive Stars , 2003, astro-ph/0311326.

[3]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[4]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[5]  A. Lien,et al.  GRB 130427A: Swift detection of a very bright burst with a likely bright optical counterpart. , 2013 .

[6]  Andre Heck,et al.  Information Handling in Astronomy - Historical Vistas , 2002 .

[7]  Eric W. Greisen,et al.  AIPS, the VLA, and the VLBA , 2003 .

[8]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[9]  E. Ramirez-Ruiz,et al.  Flaring up: radio diagnostics of the kinematic, hydrodynamic and environmental properties of gamma‐ray bursts , 2002, astro-ph/0210524.

[10]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[11]  P. Jakobsson,et al.  GRB 130427A: NOT optical photometry and redshift. , 2013 .

[12]  D. Perley GRB 130427A: CARMA 3mm observations. , 2013 .

[13]  Athol J Kemball,et al.  First results from CARMA: the combined array for research in millimeter-wave astronomy , 2006, SPIE Astronomical Telescopes + Instrumentation.

[14]  Bing Zhang,et al.  GRB 021004: Reverse Shock Emission , 2003 .

[15]  E. Ramirez-Ruiz,et al.  Was GRB 990123 a unique optical flash , 2001, astro-ph/0110519.

[16]  Re'em Sari,et al.  Hydrodynamics of Gamma-Ray Burst Afterglow , 1997 .

[17]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[18]  Goro Sato,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004 .

[19]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[20]  Z. Dai,et al.  Gamma-ray burst afterglows: effects of radiative corrections and non-uniformity of the surrounding medium , 1998, astro-ph/9806305.

[21]  Zhi-Yun Li,et al.  Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.

[22]  A. Levan,et al.  GRB 130427A: gemini-north redshift. , 2013 .

[23]  Re'em Sari,et al.  The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows , 2001 .

[24]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[25]  Bing Zhang,et al.  Gamma-Ray Burst Early Optical Afterglows: Implications for the Initial Lorentz Factor and the Central Engine , 2003 .

[26]  T. Piran,et al.  GRB 990123: The Optical Flash and the Fireball Model , 1999, astro-ph/9902009.

[27]  N. Gehrels,et al.  The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves , 2012, 1203.1059.

[28]  Z. Dai,et al.  Early Afterglows in Wind Environments Revisited , 2005, astro-ph/0508602.

[29]  Tsvi Piran,et al.  Predictions for the Very Early Afterglow and the Optical Flash , 1999, astro-ph/9901338.

[30]  Shiho Kobayashi,et al.  MAGNETIZATION DEGREE OF GAMMA-RAY BURST FIREBALLS: NUMERICAL STUDY , 2012, 1211.1032.

[31]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[32]  S. R. Kulkarni,et al.  A Radio Flare from GRB 020405: Evidence for a Uniform Medium around a Massive Stellar Progenitor , 2003 .

[33]  M. Feroci,et al.  Discovery of a Radio Flare from GRB 990123 , 1999, astro-ph/9903441.