Effects of electron doping level on minority carrier lifetimes in n-type mid-wave infrared InAs/InAs1−xSbx type-II superlattices

The minority carrier lifetime (τMC) and equilibrium electron concentration (i.e., the doping level, n0) are both important values that directly determine diffusion current in infrared photodetectors utilizing n-type absorbing regions. Here, time-resolved microwave reflectance measurements are used to non-destructively measure both of these values in mid-wave infrared InAs/ InAs1−xSbx type-II superlattices with varying n-type doping levels between 2×1014 cm−3 and 2×1016 cm−3. The measured data are analyzed using carrier recombination theory to determine the doping level ranges where Shockley-Read-Hall (SRH), radiative, and Auger recombination limit τMC. The optimal doping level, which minimizes dark current, is experimentally determined and corresponds to the electron density at which τMC switches from SRH limited to Auger limited behavior. A comparison of two InAs/ InAs1−xSbx photodetectors of different equilibrium electron densities demonstrates a decrease in dark current for a doping level near the opti...

[1]  J. Klem,et al.  Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors , 2015 .

[2]  John F. Klem,et al.  Intensity- and temperature- dependent carrier recombination in InAs/In(As1-xSbx) type-II superlattices , 2014 .

[3]  Majid Zandian,et al.  MBE HgCdTe Technology: A Very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic , 2008 .

[4]  G. Belenky,et al.  Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization , 2011 .

[5]  Diana L. Huffaker,et al.  InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors , 2016 .

[6]  John F. Klem,et al.  Temperature-dependent optical measurements of the dominant recombination mechanisms in InAs/InAsSb type-2 superlattices , 2015 .

[7]  Christoph H. Grein,et al.  Theoretical performance of very long wavelength InAs/InxGa1−xSb superlattice based infrared detectors , 1994 .

[8]  J. P. Perez,et al.  Unambiguous determination of carrier concentration and mobility for InAs/GaSb superlattice photodiode optimization , 2009 .

[9]  R. N. Hall,et al.  Recombination processes in semiconductors , 1959 .

[10]  Hongen Shen,et al.  Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence , 2010 .

[11]  John F. Klem,et al.  Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices , 2014 .

[12]  David R. Rhiger,et al.  Performance Comparison of Long-Wavelength Infrared Type II Superlattice Devices with HgCdTe , 2011 .

[13]  T. F. Boggess,et al.  Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice , 2012 .

[14]  Gregory Belenky,et al.  Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures , 2009 .

[15]  Jerry R. Meyer,et al.  AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .

[16]  John F. Klem,et al.  Analysis of III–V Superlattice nBn Device Characteristics , 2016, Journal of Electronic Materials.

[17]  Thomas F. Boggess,et al.  Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys , 2013 .

[18]  Alexander Soibel,et al.  Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices , 2013 .

[19]  Michael A. Kinch Fundamental physics of infrared detector materials , 2000 .

[20]  Christoph H. Grein,et al.  Minority carrier lifetimes in ideal InGaSb/InAs superlattices , 1992 .

[21]  Alexander Soibel,et al.  Minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices: Photon recycling and the role of radiative and Shockley-Read-Hall recombination mechanisms , 2014 .

[22]  Christoph H. Grein,et al.  Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices , 2015 .

[23]  Amy W. K. Liu,et al.  Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb , 2011 .