Mean Shift: A Robust Approach Toward Feature Space Analysis

A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

[1]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[2]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[3]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[4]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[5]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[6]  P. J. Huber Robust Statistical Procedures , 1977 .

[7]  T. Kanade,et al.  Color information for region segmentation , 1980 .

[8]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[9]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[11]  Thrasyvoulos N. Pappas,et al.  An Adaptive Clustering Algorithm For Image Segmentation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[12]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[13]  F. Mosteller,et al.  Exploring Data Tables, Trends and Shapes. , 1988 .

[14]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[15]  Thomas Risse,et al.  Hough transform for line recognition: Complexity of evidence accumulation and cluster detection , 1989, Comput. Vis. Graph. Image Process..

[16]  Jack-Gérard Postaire,et al.  Clustering by mode boundary detection , 1989, Pattern Recognit. Lett..

[17]  Nuggehally Sampath Jayant,et al.  An adaptive clustering algorithm for image segmentation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[18]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[20]  Robert Sedgewick,et al.  Algorithms in C , 1990 .

[21]  Michael Spann,et al.  A new approach to clustering , 1990, Pattern Recognit..

[22]  Azriel Rosenfeld,et al.  Hierarchical Image Analysis Using Irregular Tessellations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[24]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  William K. Pratt,et al.  Digital image processing (2nd ed.) , 1991 .

[26]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[27]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[28]  Jenq-Neng Hwang,et al.  Nonparametric multivariate density estimation: a comparative study , 1994, IEEE Trans. Signal Process..

[29]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[30]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[32]  C. Connolly The relationship between colour metrics and the appearance of three‐dimensional coloured objects , 1996 .

[33]  Xinhua Zhuang,et al.  Gaussian mixture density modeling, decomposition, and applications , 1996, IEEE Trans. Image Process..

[34]  Jeng-Shyang Pan,et al.  Fast clustering algorithms for vector quantization , 1996, Pattern Recognit..

[35]  Michel Herbin,et al.  A clustering method based on the estimation of the probability density function and on the skeleton by influence zones. Application to image processing , 1996, Pattern Recognit. Lett..

[36]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Peter J. Huber,et al.  Robust Statistical Procedures: Second Edition , 1996 .

[38]  Narendra Ahuja,et al.  Multiscale image segmentation by integrated edge and region detection , 1997, IEEE Trans. Image Process..

[39]  Dorin Comaniciu,et al.  Robust analysis of feature spaces: color image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  Gérard G. Medioni,et al.  Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Stephen J. Roberts,et al.  Parametric and non-parametric unsupervised cluster analysis , 1997, Pattern Recognit..

[42]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  B. S. Manjunath,et al.  Edge flow: A framework of boundary detection and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Kris Popat,et al.  Cluster-based probability model and its application to image and texture processing , 1997, IEEE Trans. Image Process..

[45]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[46]  Gary R. Bradski,et al.  Real time face and object tracking as a component of a perceptual user interface , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[47]  C.-C. Jay Kuo,et al.  Fast and accurate moving object extraction technique for MPEG-4 object-based video coding , 1998, Electronic Imaging.

[48]  J. Marron,et al.  Edge-Preserving Smoothers for Image Processing , 1998 .

[49]  Luc Van Gool,et al.  The cascaded Hough transform as an aid in aerial image interpretation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[50]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[51]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[52]  Bruce Fischl,et al.  Adaptive Nonlocal Filtering: A Fast Alternative to Anisotropic Diffusion for Image Enhancement , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Rachid Deriche,et al.  Geodesic active contours for supervised texture segmentation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[54]  Eric J. Pauwels,et al.  Finding Salient Regions in Images: Nonparametric Clustering for Image Segmentation and Grouping , 1999, Comput. Vis. Image Underst..

[55]  Stan Sclaroff,et al.  Deformable shape detection and description via model-based region grouping , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[56]  Jérôme Monteil,et al.  A New Interpretation and improvement of the Nonlinear Anisotropic Diffusion for Image Enhancement , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Rachid Deriche,et al.  Geodesic active regions for supervised texture segmentation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[58]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[59]  Mi-Suen Lee,et al.  Epipolar geometry estimation by tensor voting in 8D , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[60]  P. Hall,et al.  Data sharpening as a prelude to density estimation , 1999 .

[61]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[62]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[64]  B. S. Manjunath,et al.  EdgeFlow: a technique for boundary detection and image segmentation , 2000, IEEE Trans. Image Process..

[65]  Steven A. Shafer,et al.  Segmentation and Interpretation of Multicolored Objects with Highlights , 2000, Comput. Vis. Image Underst..

[66]  Josef Kittler,et al.  The adaptive subspace map for texture segmentation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[67]  Sugata Ghosal,et al.  Efficient query modification for image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[68]  Dorin Comaniciu,et al.  Nonparametric robust methods for computer vision , 2000 .

[69]  Danny Barash,et al.  Bilateral Filtering and Anisotropic Diffusion: Towards a Unified Viewpoint , 2001, Scale-Space.

[70]  Dorin Comaniciu,et al.  The Variable Bandwidth Mean Shift and Data-Driven Scale Selection , 2001, ICCV.

[71]  J. Wade Davis,et al.  Statistical Pattern Recognition , 2003, Technometrics.

[72]  Sang Wook Lee,et al.  Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation , 1996, International Journal of Computer Vision.

[73]  Marion Kee,et al.  Analysis , 2004, Machine Translation.