A robust Kantorovich's theorem on the inexact Newton method with relative residual error tolerance

We prove that under semi-local assumptions, the inexact Newton method with a fixed relative residual error tolerance converges Q-linearly to a zero of the nonlinear operator under consideration. Using this result we show that the Newton method for minimizing a self-concordant function or to find a zero of an analytic function can be implemented with a fixed relative residual error tolerance. In the absence of errors, our analysis retrieve the classical Kantorovich Theorem on the Newton method.

[1]  Chong Li,et al.  Kantorovich-type convergence criterion for inexact Newton methods , 2009 .

[2]  Benedetta Morini,et al.  Convergence behaviour of inexact Newton methods , 1999, Math. Comput..

[3]  Jinhai Chen,et al.  Convergence behaviour of inexact Newton methods under weak Lipschitz condition , 2006 .

[4]  Richard E. Ewing,et al.  "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .

[5]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds , 2008 .

[6]  Florian A. Potra,et al.  Potra The Kantorovich Theorem and interior point methods , 2004 .

[7]  T. Ypma Local Convergence of Inexact Newton Methods , 1984 .

[8]  Chong Li,et al.  EXTENDED NEWTON’S METHOD FOR MAPPINGS ON RIEMANNIAN MANIFOLDS WITH VALUES IN A CONE , 2009 .

[9]  Chong Li,et al.  Kantorovich’s theorem for Newton’s method on Lie groups , 2007 .

[10]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[11]  Chong Li,et al.  Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition , 2006 .

[12]  Chong Li,et al.  Smale's α-theory for inexact Newton methods under the γ-condition☆ , 2010 .

[13]  Felipe Alvarez,et al.  A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..

[14]  Orizon Pereira Ferreira,et al.  Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..

[15]  Orizon Pereira Ferreira,et al.  Kantorovich’s majorants principle for Newton’s method , 2009, Comput. Optim. Appl..

[16]  Igor Moret,et al.  A kantorovich-type theorem for inexact newton methods , 1989 .

[17]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[18]  P. P. Zabrejko,et al.  The majorant method in the theory of newton-kantorovich approximations and the pták error estimates , 1987 .

[19]  Wang Xinghua,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999 .

[20]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[21]  Xinghua Wang,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999, Math. Comput..

[22]  X. Wang ON DOMINATING SEQUENCE METHOD IN THE POINT ESTIMATE AND SMALE THEOREM , 1990 .

[23]  Chong Li,et al.  Smale's point estimate theory for Newton's method on Lie groups , 2009, J. Complex..

[24]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[25]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..

[26]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[27]  Jinhua Wang,et al.  Uniqueness of the singular points of vector fields on Riemannian manifolds under the gamma-condition , 2006, J. Complex..

[28]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .