GJ 273: on the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec

Context. Planets orbiting low-mass stars such as M dwarfs are now considered a cornerstone in the search for planets with the potential to harbour life. GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, which is composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e. Planet GJ 273b resides in the habitable zone. Currently, due to a lack of observed planetary transits, only the minimum masses of the planets are known: Mb sin ib = 2.89 M⊕, Mc sin ic = 1.18 M⊕, Md sin id = 10.80 M⊕, and Me sin ie = 9.30 M⊕. Despite its interesting character, the GJ 273 planetary system has been poorly studied thus far. Aims. We aim to precisely determine the physical parameters of the individual planets, in particular, to break the mass–inclination degeneracy to accurately determine the mass of the planets. Moreover, we present a thorough characterisation of planet GJ 273b in terms of its potential habitability. Methods. First, we explored the planetary formation and hydration phases of GJ 273 during the first 100 Myr. Secondly, we analysed the stability of the system by considering both the two- and four-planet configurations. We then performed a comparative analysis between GJ 273 and the Solar System and we searched for regions in GJ 273 which may harbour minor bodies in stable orbits, that is, the main asteroid belt and Kuiper belt analogues. Results. From our set of dynamical studies, we find that the four-planet configuration of the system allows us to break the mass–inclination degeneracy. From our modelling results, the masses of the planets are unveiled as: 2.89 ≤ Mb ≤ 3.03 M⊕, 1.18 ≤ Mc ≤ 1.24 M⊕, 10.80 ≤ Md ≤ 11.35 M⊕, and 9.30 ≤ Me ≤ 9.70 M⊕. These results point to a system that is likely to be composed of an Earth-mass planet, a super-Earth and two mini-Neptunes. Based on planetary formation models, we determine that GJ 273b is likely an efficient water captor while GJ 273c is probably a dry planet. We find that the system may have several stable regions where minor bodies might reside. Collectively, these results are used to offer a comprehensive discussion about the habitability of GJ 273b.

[1]  P. Bown,et al.  On impact and volcanism across the Cretaceous-Paleogene boundary , 2020, Science.

[2]  C. Johnstone Hydrodynamic Escape of Water Vapor Atmospheres near Very Active Stars , 2019, The Astrophysical Journal.

[3]  F. Bouchy,et al.  Revisited mass-radius relations for exoplanets below 120 M⊕ , 2019, Astronomy & Astrophysics.

[4]  M. Wyatt,et al.  Susceptibility of planetary atmospheres to mass loss and growth by planetesimal impacts: the impact shoreline , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  A. Dugaro,et al.  Physical properties of terrestrial planets and water delivery in the habitable zone using N-body simulations with fragmentation , 2019, Astronomy & Astrophysics.

[6]  A. Fitzsimmons,et al.  Detection of CN Gas in Interstellar Object 2I/Borisov , 2019, The Astrophysical Journal.

[7]  A. D. Feinstein,et al.  Planet Hunters TESS I: TOI 813, a subgiant hosting a transiting Saturn-sized planet on an 84-day orbit , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Riccardo Scarpa,et al.  Interstellar Visitors: A Physical Characterization of Comet C/2019 Q4 (Borisov) with OSIRIS at the 10.4 m GTC , 2019, Research Notes of the AAS.

[9]  M. Tuomi,et al.  GJ 357: a low-mass planetary system uncovered by precision radial velocities and dynamical simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  S. Dreizler,et al.  RedDots: a temperate 1.5 Earth-mass planet candidate in a compact multiterrestrial planet system around GJ 1061 , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  Chelsea X. Huang,et al.  A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18 , 2019, The Astrophysical Journal.

[12]  Jake T. Clark,et al.  The HD 181433 Planetary System: Dynamics and a New Orbital Solution , 2019, The Astronomical Journal.

[13]  G. Mulders,et al.  Wōtan: Comprehensive Time-series Detrending in Python , 2019, The Astronomical Journal.

[14]  Zsolt Reg'aly,et al.  Water delivery to the TRAPPIST-1 planets , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  Gottingen,et al.  Transit least-squares survey -- II. Discovery and validation of 17 new sub- to super-Earth-sized planets in multi-planet systems from K2 , 2019, 1905.09038.

[16]  L. Kaltenegger,et al.  Lessons from early Earth: UV surface radiation should not limit the habitability of active M star systems , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  A. Morbidelli,et al.  Kuiper belt: Formation and evolution , 2019, The Trans-Neptunian Solar System.

[18]  Gottingen,et al.  Transit least-squares survey , 2019, Astronomy & Astrophysics.

[19]  Keivan G. Stassun,et al.  The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf , 2019, The Astronomical Journal.

[20]  Sara Seager,et al.  A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270 , 2019, Nature Astronomy.

[21]  J. Augereau,et al.  Hot exozodiacal dust: an exocometary origin? , 2019, Astronomy & Astrophysics.

[22]  Keivan G. Stassun,et al.  Near-resonance in a System of Sub-Neptunes from TESS , 2019, The Astronomical Journal.

[23]  M. Hippke,et al.  Optimized transit detection algorithm to search for periodic transits of small planets , 2019, Astronomy & Astrophysics.

[24]  Keivan G. Stassun,et al.  Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs , 2019, The Astronomical Journal.

[25]  S. Sohy,et al.  The SPECULOOS Southern Observatory Begins its Hunt for Rocky Planets , 2018 .

[26]  Jonathan P. Williams,et al.  The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – I: project description and continuum images at 28 au resolution , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  D. Queloz,et al.  The origin of RNA precursors on exoplanets , 2018, Science Advances.

[28]  Michaël Gillon,et al.  Searching for red worlds , 2018 .

[29]  R. Dvorak,et al.  On the dynamics of comets in extrasolar planetary systems , 2018, The Trans-Neptunian Solar System.

[30]  M. Bate On the diversity and statistical properties of protostellar discs , 2018, 1801.07721.

[31]  J. Davenport,et al.  Modeling Repeated M Dwarf Flaring at an Earth-like Planet in the Habitable Zone: Atmospheric Effects for an Unmagnetized Planet , 2017, Astrobiology.

[32]  Larry Denneau,et al.  A brief visit from a red and extremely elongated interstellar asteroid , 2017, Nature.

[33]  R. P. Butler,et al.  The CARMENES search for exoplanets around M dwarfs , 2018, Astronomy & Astrophysics.

[34]  Xavier Bonfils,et al.  A temperate exo-Earth around a quiet M dwarf at 3.4 parsec , 2017, 1711.06177.

[35]  Ralf Kotulla,et al.  Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes , 2017, 1711.05687.

[36]  R. Dvorak,et al.  Exocomets in the Proxima Centauri system and their importance for water transport , 2017, Monthly Notices of the Royal Astronomical Society.

[37]  G. El'ia,et al.  Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments , 2017, 1710.04617.

[38]  A. Burdanov,et al.  SPECULOOS exoplanet search and its prototype on TRAPPIST , 2017, 1710.03775.

[39]  S. Kane,et al.  Obliquity and Eccentricity Constraints for Terrestrial Exoplanets , 2017, 1709.09240.

[40]  Roberto Orosei,et al.  The Main Belt Comets and ice in the Solar System , 2017, 1709.05549.

[41]  R. Barnes Tidal locking of habitable exoplanets , 2017, Celestial Mechanics and Dynamical Astronomy.

[42]  G. El'ia,et al.  Migrating Jupiter up to the habitable zone: Earth-like planet formation and water delivery , 2017, 1708.00290.

[43]  G. El'ia,et al.  Formation of solar system analogues – I. Looking for initial conditions through a population synthesis analysis , 2017, 1705.08608.

[44]  V. Martínez,et al.  KIC 8462852: Will the Trojans return in 2021? , 2017, 1705.08427.

[45]  J. Graham,et al.  Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets , 2017, 1705.05868.

[46]  T. Hinse,et al.  The Dynamical History of Chariklo and Its Rings , 2017, 1705.02378.

[47]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[48]  A. Dugaro,et al.  Terrestrial planets and water delivery around low-mass stars , 2016 .

[49]  C. Lovis,et al.  Magnetic activity in the HARPS M-dwarf sample. The rotation-activity relationship for very low-mass stars through R'HK , 2016, 1610.09007.

[50]  Aomawa L. Shields,et al.  The Habitability of Planets Orbiting M-dwarf Stars , 2016, 1610.05765.

[51]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[52]  R. Wittenmyer,et al.  Modelling the inner debris disc of HR 8799 , 2016, 1608.00670.

[53]  L. Testi,et al.  Brown dwarf disks with ALMA: evidence for truncated dust disks in Ophiuchus (Corrigendum) , 2016, Astronomy & Astrophysics.

[54]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[55]  T. Lauer,et al.  The geology of Pluto and Charon through the eyes of New Horizons , 2016, Science.

[56]  Eric Agol,et al.  The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f , 2016, Astrobiology.

[57]  David J Armstrong,et al.  The host stars of Kepler's habitable exoplanets: superflares, rotation and activity , 2015, 1511.05306.

[58]  J. Rowe,et al.  THE FREQUENCY OF GIANT IMPACTS ON EARTH-LIKE WORLDS , 2015, 1511.03663.

[59]  S. Lynn,et al.  Planet Hunters IX. KIC 8462852-where's the flux? , 2015, 1509.03622.

[60]  É. Bolmont,et al.  Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62 , 2015, 1507.04751.

[61]  Hanno Rein,et al.  WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations , 2015, 1506.01084.

[62]  J. Szulágyi,et al.  Planet heating prevents inward migration of planetary cores , 2015, Nature.

[63]  D. Apai,et al.  VOLATILE DELIVERY TO PLANETS FROM WATER-RICH PLANETESIMALS AROUND LOW-MASS STARS , 2015, 1502.07412.

[64]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[65]  S. Meibom,et al.  A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster , 2015, Nature.

[66]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[67]  A. Lagrange,et al.  Two families of exocomets in the β Pictoris system , 2014, Nature.

[68]  K. Go'zdziewski,et al.  PREDICTING A THIRD PLANET IN THE KEPLER-47 CIRCUMBINARY SYSTEM , 2014, 1409.1349.

[69]  Mauro Barbieri,et al.  Improving PARSEC models for very low mass stars , 2014, 1409.0322.

[70]  D. James,et al.  Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life , 2014, 1406.7353.

[71]  P. McCullough,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[72]  Shawn Domagal-Goldman,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS , 2014, 1404.5292.

[73]  T. Barclay,et al.  FORMATION, TIDAL EVOLUTION, AND HABITABILITY OF THE KEPLER-186 SYSTEM , 2014, 1404.4368.

[74]  T. Quinn,et al.  Effects of extreme obliquity variations on the habitability of exoplanets. , 2014, Astrobiology.

[75]  M. Tuomi,et al.  Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics , 2014, 1403.0430.

[76]  K. Kurita,et al.  THERMAL–ORBITAL COUPLED TIDAL HEATING AND HABITABILITY OF MARTIAN-SIZED EXTRASOLAR PLANETS AROUND M STARS , 2014, 1402.2378.

[77]  Alain Lecavelier des Etangs,et al.  Exocomets in the circumstellar gas disk of HD 172555 , 2014, 1401.1365.

[78]  O. M. Guilera,et al.  Terrestrial planets in high-mass disks without gas giants , 2013 .

[79]  C. Hanot,et al.  A near-infrared interferometric survey of debris-disc stars - III. First statistics based on 42 stars observed with CHARA/FLUOR , 2013, 1307.2488.

[80]  Dorian S. Abbot,et al.  STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS , 2013, 1307.0515.

[81]  R. Deshpande,et al.  ERRATUM: “HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES” (2013, ApJ, 765, 131) , 2013 .

[82]  M. F. Marcucci,et al.  SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES , 2013 .

[83]  John E. Chambers,et al.  Late-stage planetary accretion including hit-and-run collisions and fragmentation , 2013 .

[84]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[85]  R. Deshpande,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[86]  N. Santos,et al.  Metallicity of M dwarfs - III. Planet-metallicity and planet-stellar mass correlations of the HARPS GTO M dwarf sample , 2012, 1212.3372.

[87]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[88]  Russel J. White,et al.  STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS , 2012, 1208.2431.

[89]  J. Papaloizou,et al.  Type I Planet Migration in Weakly Magnetized Laminar Disks , 2012, Proceedings of the International Astronomical Union.

[90]  John C. Geary,et al.  ARCHITECTURE OF KEPLER'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES , 2012, The Astrophysical Journal.

[91]  F. Pepe,et al.  Comparing HARPS and Kepler surveys The alignment of multiple-planet systems , 2012, 1202.2801.

[92]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[93]  H. Rein,et al.  REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.

[94]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[95]  S. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION , 2011, 1109.4588.

[96]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS , 2011, 1106.6084.

[97]  S. Tremaine,et al.  THE STATISTICS OF MULTI-PLANET SYSTEMS , 2011, 1106.5403.

[98]  Y. Miguel,et al.  The diversity of planetary system architectures: contrasting theory with observations , 2011, 1106.3281.

[99]  J. Lissauer,et al.  Obliquity variations of a moonless Earth , 2011 .

[100]  C. Clarke,et al.  Debris disk size distributions: steady state collisional evolution with Poynting-Robertson drag and other loss processes , 2011, 1103.5499.

[101]  S. Barnes A SIMPLE NONLINEAR MODEL FOR THE ROTATION OF MAIN-SEQUENCE COOL STARS. I. INTRODUCTION, IMPLICATIONS FOR GYROCHRONOLOGY, AND COLOR–PERIOD DIAGRAMS , 2010 .

[102]  C. Baruteau,et al.  A torque formula for non-isothermal Type I planetary migration – II. Effects of diffusion , 2010, 1007.4964.

[103]  C. Dullemond,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS. II. EXTENSION TO FAINTER SOURCES , 2010, 1007.5070.

[104]  D. Kilkenny,et al.  UBV(RI)C JHK observations of Hipparcos-selected nearby stars , 2010 .

[105]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[106]  G. Marcy,et al.  ROTATION AND MAGNETIC ACTIVITY IN A SAMPLE OF M-DWARFS , 2010 .

[107]  C. Baruteau,et al.  A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag , 2009, 0909.4552.

[108]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[109]  Austin,et al.  The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the h , 2009, 0908.0944.

[110]  E. Mamajek Initial Conditions of Planet Formation: Lifetimes of Primordial Disks , 2009, 0906.5011.

[111]  Sean N. Raymond,et al.  TIDAL LIMITS TO PLANETARY HABITABILITY , 2009, 0906.1785.

[112]  N. Kaib,et al.  Building the terrestrial planets: Constrained accretion in the inner Solar System , 2009, 0905.3750.

[113]  C. Migaszewski,et al.  First results from the Calan–Hertfordshire Extrasolar Planet Search : exoplanets and the discovery of an eccentric brown dwarf in the desert , 2009, 0905.2985.

[114]  Willy Benz,et al.  Extrasolar planet population synthesis - II. Statistical comparison with observations , 2009, 0904.2542.

[115]  H. Gail,et al.  Abundances of the elements in the solar system , 2009, 0901.1149.

[116]  K. Menou,et al.  HABITABLE CLIMATES: THE INFLUENCE OF OBLIQUITY , 2008, 0807.4180.

[117]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[118]  G. Gatewood ASTROMETRIC STUDIES OF ALDEBARAN, ARCTURUS, VEGA, THE HYADES, AND OTHER REGIONS , 2008 .

[119]  R. Nelson,et al.  Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc , 2008, 0811.4322.

[120]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[121]  David Charbonneau,et al.  Design Considerations for a Ground-Based Transit Search for Habitable Planets Orbiting M Dwarfs , 2007, 0709.2879.

[122]  J. Kasting,et al.  M stars as targets for terrestrial exoplanet searches and biosignature detection. , 2007, Astrobiology.

[123]  J. Lissauer Planets Formed in Habitable Zones of M Dwarf Stars Probably Are Deficient in Volatiles , 2007, astro-ph/0703576.

[124]  M. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006, astro-ph/0612671.

[125]  T. Gallardo Atlas of the mean motion resonances in the Solar System , 2006 .

[126]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[127]  W. Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004, astro-ph/0412444.

[128]  C. Moutou,et al.  The HARPS search for southern extra-solar planets , 2004, Astronomy & Astrophysics.

[129]  Hidekazu Tanaka,et al.  Three-dimensional Interaction between a Planet and an Isothermal Gaseous Disk. II. Eccentricity Waves and Bending Waves , 2004 .

[130]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[131]  Tucson,et al.  Making other earths: dynamical simulations of terrestrial planet formation and water delivery , 2003, astro-ph/0308159.

[132]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[133]  Graham Ryder,et al.  Mass flux in the ancient Earth‐Moon system and benign implications for the origin of life on Earth , 2002 .

[134]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[135]  Andrzej J. Maciejewski,et al.  Global dynamics of planetary systems with the MEGNO criterion , 2001 .

[136]  M. Brown,et al.  The Inclination Distribution of the Kuiper Belt , 2001 .

[137]  M. Rampino,et al.  Impact Event at the Permian-Triassic Boundary: Evidence from Extraterrestrial Noble Gases in Fullerenes , 2001, Science.

[138]  N. Sleep,et al.  The habitat and nature of early life , 2001, Nature.

[139]  P. M. Cincotta,et al.  Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .

[140]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[141]  G. Chabrier,et al.  Theory of Low-Mass Stars and Substellar Objects , 2000, astro-ph/0006383.

[142]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[143]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[144]  E. Chiang,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[145]  J. Kasting,et al.  Habitable moons around extrasolar giant planets , 1997, Nature.

[146]  S. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey.II.The Southern M Dwarfs and Investigation of Magnetic Activity , 1996 .

[147]  T. Owen,et al.  Comets, impacts, and atmospheres. , 1995, Icarus.

[148]  David Jewitt,et al.  The Solar System Beyond Neptune , 1995 .

[149]  Todd J. Henry,et al.  The solar neighborhood, 1: Standard spectral types (K5-M8) for northern dwarfs within eight parsecs , 1994 .

[150]  C. Chyba,et al.  The violent environment of the origin of life. , 1993 .

[151]  D. Jewitt,et al.  Discovery of the candidate Kuiper belt object 1992 QB1 , 1993, Nature.

[152]  J. Laskar,et al.  The chaotic obliquity of the planets , 1993, Nature.

[153]  V. Oberbeck,et al.  Impacts and the origin of life , 1989, Nature.

[154]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[155]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[156]  F. Mignard The evolution of the lunar orbit revisited. I , 1979 .

[157]  M. Barucci,et al.  The Trans-Neptunian Solar System , 2020 .

[158]  M. Lain,et al.  Calvin Digital Commons Calvin Digital Commons The First Post-Kepler Brightness Dips of KIC 8462852 The First Post-Kepler Brightness Dips of KIC 8462852 , 2019 .

[159]  V. Meadows,et al.  Factors Affecting Exoplanet Habitability , 2018 .

[160]  J. Licandro,et al.  The Diverse Population of Small Bodies of the Solar System , 2017 .

[161]  J. Castillo‐Rogez,et al.  Planetary Ices Attenuation Properties , 2013 .

[162]  J. Castillo‐Rogez,et al.  The science of solar system ices , 2013 .

[163]  W. B.,et al.  Differences between the impact regimes of the terrestrial planets: Implications for primordial D:H ratios , 2009 .

[164]  V. Oberbeck,et al.  Estimates of the maximum time required to originate life , 2005, Origins of life and evolution of the biosphere.

[165]  P. Cincotta,et al.  Conditional Entropy , 1999 .

[166]  D. Blaney,et al.  Volcanic Eruptions on Io: Heat Flow, Resurfacing, and Lava Composition , 1995 .

[167]  J. Sadil The Moon and the Planets , 1969, Nature.

[168]  F. Whipple,et al.  The Poynting-Robertson effect on meteor orbits , 1950 .

[169]  C. Clarke,et al.  DEBRIS DISK SIZE DISTRIBUTIONS : STEADY STATE COLLISIONAL EVOLUTION WITH PR DRAG AND OTHER LOSS PROCESSES , 2022 .