Graphene in a photonic metamaterial.

We demonstrate a photonic metamaterial that shows extraordinary sensitivity to the presence of a single atomic layer of graphene on its surface. Metamaterial's optical transmission increases multi-fold at the resonance frequency linked to the Fano-type plasmonic mode supported by the periodic metallic nanostructure. The experiments were performed with chemical vapor deposited (CVD) graphene covering a number of size-scaled metamaterial samples with plasmonic modes at different frequencies ranging from 167 to 187 Thz.

[1]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[2]  Vladimir I. Fal'ko,et al.  Visibility of graphene flakes on a dielectric substrate , 2007, 0705.0091.

[3]  Christian Debus,et al.  Frequency selective surfaces for high sensitivity terahertz sensing , 2007, 2104.05462.

[4]  Nikolay I. Zheludev,et al.  Coherent and incoherent metamaterials and order-disorder transitions , 2008, 0809.2361.

[5]  H. Grebel,et al.  Depositing graphene films on solid and perforated substrates , 2008, Nanotechnology.

[6]  Marcus Freitag,et al.  Graphene: nanoelectronics goes flat out. , 2008, Nature nanotechnology.

[7]  D. Nolte,et al.  Optical contrast and clarity of graphene on an arbitrary substrate , 2009 .

[8]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[9]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[10]  Jong-Gwan Yook,et al.  Biosensing using split-ring resonators at microwave regime , 2008 .

[11]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[12]  N. Dai,et al.  Enhanced visibility of graphene: Effect of one-dimensional photonic crystal , 2007, 0710.2447.

[13]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[14]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[15]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[16]  Basudev Lahiri,et al.  Asymmetric split ring resonators for optical sensing of organic materials. , 2009, Optics express.

[17]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[18]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[19]  Akira Ishimaru,et al.  GENERALIZED SURFACE PLASMON RESONANCE SENSORS USING METAMATERIALS AND NEGATIVE INDEX MATERIALS , 2005 .

[20]  Xiang Zhang,et al.  Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 , 2009 .

[21]  F. Guinea,et al.  Drawing Conclusions from Graphene , 2006 .

[22]  Visibility study of graphene multilayer structures , 2008, 0806.1306.

[23]  D P Tsai,et al.  Spectral collapse in ensembles of metamolecules. , 2009, Physical review letters.

[24]  Yihong Wu,et al.  Graphene thickness determination using reflection and contrast spectroscopy. , 2007, Nano letters.

[25]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[26]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[27]  S. Prosvirnin,et al.  Trapping of light by metal arrays , 2010 .