Integrating Local Feature Detectors in the Interactive Visual Analysis of Flow Simulation Data

We present smooth formulations of common vortex detectors that allow a seamless integration into the concept of interactive visual analysis of flow simulation data. We express the originally binary feature detectors as fuzzy-sets that can be combined using the linking and brushing concepts of interactive visual analysis. Both interaction and visualization gain from having multiple detectors concurrently available and from the ability to combine them. An application study on automotive data reveals how these vortex detectors combine and perform in praxis.

[1]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[2]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[3]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[4]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[5]  R. Adrian,et al.  Mechanisms for Generating Coherent Packet of Hairpin Vortices in Near-Wall Turbulence , 1997 .

[6]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[7]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[8]  R. Haimes,et al.  On the velocity gradient tensor and fluid feature extraction , 1999 .

[9]  D. Thompson,et al.  Eduction of swirling structure using the velocity gradient tensor , 1991 .

[10]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[11]  James J. Thomas,et al.  Defining Insight for Visual Analytics , 2009, IEEE Computer Graphics and Applications.

[12]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[13]  H. Miura,et al.  Identification of Tubular Vortices in Turbulence , 1997 .

[14]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[15]  R. Cucitore,et al.  On the effectiveness and limitations of local criteria for the identification of a vortex , 1999 .

[16]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[17]  Alex T. Pang,et al.  Volume Rendering Data with Uncertainty Information , 2001, VisSym.

[18]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[19]  S. Balachandar,et al.  Mechanisms for generating coherent packets of hairpin vortices in channel flow , 1999, Journal of Fluid Mechanics.

[20]  M. S. Chong,et al.  A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts , 1987 .

[21]  R. Adrian,et al.  On the relationships between local vortex identification schemes , 2005, Journal of Fluid Mechanics.

[22]  Robert S. Laramee,et al.  Topology-based versus Feature-based Flow Analysis - Challenges and an Application , 2007, Topology-based Methods in Visualization.

[23]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[24]  Matthew O. Ward,et al.  A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization , 2002, Inf. Vis..

[25]  C. Truesdell The Kinematics Of Vorticity , 1954 .

[26]  Robert S. Laramee,et al.  Geometric flow visualization techniques for CFD simulation data , 2005, SCCG '05.