Random Walks, Arrangements, Cell Complexes, Greedoids, and Self-Organizing Libraries

The starting point is the known fact that some much-studied random walks on permutations, such as the Tsetlin library, arise from walks on real hyperplane arrangements. This paper explores similar walks on complex hyperplane arrangements. This is achieved by involving certain cell complexes naturally associated with the arrangement. In a particular case this leads to walks on libraries with several shelves.

[1]  P. Orlik,et al.  Arrangements Of Hyperplanes , 1992 .

[2]  Volkmar Welker,et al.  The Homology of "k-Equal" Manifolds and Related Partition Lattices , 1995 .

[3]  Reinhard C. Laubenbacher,et al.  Perspectives on A-homotopy theory and its applications , 2005, Discret. Math..

[4]  M. Khovanov Real $K(\pi,1)$ arrangements from finite root systems , 1996 .

[5]  László Lovász,et al.  Homotopy properties of greedoids , 1985 .

[6]  G. Ziegler,et al.  Combinatorial stratification of complex arrangements , 1992 .

[7]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[8]  B. Sturmfels Oriented Matroids , 1993 .

[9]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[10]  James W. Walker,et al.  Homotopy Type and Euler Characteristic of Partially Ordered Sets , 1981, Eur. J. Comb..

[11]  P. Diaconis,et al.  Random walks and hyperplane arrangements , 1998 .

[12]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[13]  O. Hudry R. L. Graham, M. Grötschel, L. Lovasz (sous la direction de), "Handbook of combinatorics", Amsterdam, North-Holland, 1995 (2 volumes) , 2000 .

[14]  Günter M. Ziegler,et al.  Oriented Matroids , 2017, Handbook of Discrete and Computational Geometry, 2nd Ed..

[15]  Kenneth S. Brown,et al.  Semigroups, Rings, and Markov Chains , 2000 .

[16]  A. Björner Topological methods , 1996 .

[17]  Louis J. Billera,et al.  RANDOM WALKS AND PLANE ARRANGEMENTS IN THREE DIMENSIONS , 1999 .

[18]  Günter M. Ziegler,et al.  Matroid Applications: Introduction to Greedoids , 1992 .

[19]  László Lovász,et al.  Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.

[20]  László Lovász,et al.  Linear decision trees, subspace arrangements and Möbius functions , 1994 .

[21]  P. Hanlon,et al.  A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements , 1999 .