Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature
暂无分享,去创建一个
Robert J. Elliott | Simon Haykin | Ienkaran Arasaratnam | S. Haykin | R. Elliott | I. Arasaratnam | Ienkaran Arasaratnam
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Y. Bar-Shalom,et al. Unbiased converted measurements for tracking , 1998 .
[3] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[4] Robert J. Elliott,et al. Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.
[5] Harold W. Sorenson,et al. Recursive Bayesian estimation using piece-wise constant approximations , 1988, Autom..
[6] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[7] Jeff Harrison,et al. Practical Bayesian forecasting , 1987 .
[8] Harold J. Kushner,et al. A nonlinear filtering algorithm based on an approximation of the conditional distribution , 2000, IEEE Trans. Autom. Control..
[9] Gene H. Golub,et al. Matrix computations , 1983 .
[10] A. H. Wang,et al. Optimal quadrature formula nonlinear estimators , 1978, Inf. Sci..
[11] K. Srinivasan. State estimation by orthogonal expansion of probability distributions , 1970 .
[12] M. Zakai. On the optimal filtering of diffusion processes , 1969 .
[13] H. Sorenson,et al. NONLINEAR FILTERING BY APPROXIMATION OF THE A POSTERIORI DENSITY , 1968 .
[14] Jayant G. Deshpande,et al. Parameter estimation using splines , 1974, Inf. Sci..
[15] Herman Bruyninckx,et al. Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..
[16] Dimitri P. Bertsekas,et al. Incremental Least Squares Methods and the Extended Kalman Filter , 1996, SIAM J. Optim..
[17] Simon Haykin,et al. Bayesian sequential state estimation for MIMO wireless communications , 2004, Proceedings of the IEEE.
[18] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[19] Tor Steinar Schei,et al. A finite-difference method for linearization in nonlinear estimation algorithms , 1997, Autom..
[20] Arthur Gelb,et al. Applied Optimal Estimation , 1974 .
[21] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[22] D. Middleton,et al. Man-Made Noise in Urban Environments and Transportation Systems: Models and Measurements , 1973, IEEE Trans. Commun..
[23] I. Gyongy. Approximations of Stochastic Partial Differential Equations , 2002 .
[24] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[25] Herman Bruyninckx,et al. Kalman filters for non-linear systems: a comparison of performance , 2004 .
[26] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[27] R. Bucy,et al. Digital synthesis of non-linear filters , 1971 .
[28] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[29] Simon Haykin,et al. Optimum nonlinear filtering , 1997, IEEE Trans. Signal Process..
[30] Nando de Freitas,et al. Sequential Monte Carlo in Practice , 2001 .
[31] David J. Salmond. Mixture reduction algorithms for target tracking in clutter , 1990 .
[32] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[33] R. Klein,et al. Implementation of non-linear estimators using monospline , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.
[34] J. Naylor,et al. Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .
[35] Jason L. Williams. Gaussian Mixture Reduction for Tracking Multiple Maneuvering Targets in Clutter , 2003 .
[36] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.
[37] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[38] I. Bilik,et al. Target tracking in glint noise environment using nonlinear non-Gaussian Kalman filter , 2006, 2006 IEEE Conference on Radar.
[39] Hugh F. Durrant-Whyte,et al. A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..
[40] Venkatarama Krishnan,et al. Probability and Random Processes: Krishnan/Probability and Random Processes , 2006 .
[41] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[42] E. Wong,et al. Stochastic Processes in Engineering Systems , 1984 .
[43] Simon J. Julier,et al. The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[44] D. Salmond. Mixture reduction algorithms for target tracking , 1989 .
[45] A. F. M. Smith,et al. Progress with numerical and graphical methods for practical Bayesian statistics , 1987 .
[46] Michael I. Jordan. Graphical Models , 2003 .
[47] William H. Press,et al. Numerical recipes in C , 2002 .
[48] G. Bierman. Factorization methods for discrete sequential estimation , 1977 .
[49] Robert J. Elliott,et al. Measure Theory and Filtering: Preface , 2004 .
[50] Thia Kirubarajan,et al. Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .
[51] G. Hewer,et al. Robust Preprocessing for Kalman Filtering of Glint Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.
[52] F. W. Cathey,et al. The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..
[53] B. Øksendal. Stochastic Differential Equations , 1985 .
[54] R. Wishner,et al. Suboptimal state estimation for continuous-time nonlinear systems from discrete noisy measurements , 1968 .
[55] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[56] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[57] Richard S. Bucy,et al. Nonlinear Filter Representation via Spline Functions , 1974 .
[58] Nikos A. Vlassis,et al. Accelerated EM-based clustering of large data sets , 2006, Data Mining and Knowledge Discovery.
[59] M. West,et al. Bayesian forecasting and dynamic models , 1989 .
[60] Subhash Challa,et al. Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature , 2000, IEEE Trans. Signal Process..
[61] H. Kushner. Dynamical equations for optimal nonlinear filtering , 1967 .
[62] Simon J. Godsill,et al. An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.
[63] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[64] S. Lakshmivarahan,et al. Probability and Random Processes , 2007 .
[65] Niels Kjølstad Poulsen,et al. New developments in state estimation for nonlinear systems , 2000, Autom..
[66] Arun N. Netravali,et al. Optimal spline digital simulators of analog filters , 1971 .
[67] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[68] D. Bertsekas. Incremental least squares methods and the extended Kalman filter , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.