Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature

In this paper, a new version of the quadrature Kalman filter (QKF) is developed theoretically and tested experimentally. We first derive the new QKF for nonlinear systems with additive Gaussian noise by linearizing the process and measurement functions using statistical linear regression (SLR) through a set of Gauss-Hermite quadrature points that parameterize the Gaussian density. Moreover, we discuss how the new QKF can be extended and modified to take into account specific details of a given application. We then go on to extend the use of the new QKF to discrete-time, nonlinear systems with additive, possibly non-Gaussian noise. A bank of parallel QKFs, called the Gaussian sum-quadrature Kalman filter (GS-QKF) approximates the predicted and posterior densities as a finite number of weighted sums of Gaussian densities. The weights are obtained from the residuals of the QKFs. Three different Gaussian mixture reduction techniques are presented to alleviate the growing number of the Gaussian sum terms inherent to the GS-QKFs. Simulation results exhibit a significant improvement of the GS-QKFs over other nonlinear filtering approaches, namely, the basic bootstrap (particle) filters and Gaussian-sum extended Kalman filters, to solve nonlinear non- Gaussian filtering problems.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Y. Bar-Shalom,et al.  Unbiased converted measurements for tracking , 1998 .

[3]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[4]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[5]  Harold W. Sorenson,et al.  Recursive Bayesian estimation using piece-wise constant approximations , 1988, Autom..

[6]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[7]  Jeff Harrison,et al.  Practical Bayesian forecasting , 1987 .

[8]  Harold J. Kushner,et al.  A nonlinear filtering algorithm based on an approximation of the conditional distribution , 2000, IEEE Trans. Autom. Control..

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  A. H. Wang,et al.  Optimal quadrature formula nonlinear estimators , 1978, Inf. Sci..

[11]  K. Srinivasan State estimation by orthogonal expansion of probability distributions , 1970 .

[12]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[13]  H. Sorenson,et al.  NONLINEAR FILTERING BY APPROXIMATION OF THE A POSTERIORI DENSITY , 1968 .

[14]  Jayant G. Deshpande,et al.  Parameter estimation using splines , 1974, Inf. Sci..

[15]  Herman Bruyninckx,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..

[16]  Dimitri P. Bertsekas,et al.  Incremental Least Squares Methods and the Extended Kalman Filter , 1996, SIAM J. Optim..

[17]  Simon Haykin,et al.  Bayesian sequential state estimation for MIMO wireless communications , 2004, Proceedings of the IEEE.

[18]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[19]  Tor Steinar Schei,et al.  A finite-difference method for linearization in nonlinear estimation algorithms , 1997, Autom..

[20]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[21]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[22]  D. Middleton,et al.  Man-Made Noise in Urban Environments and Transportation Systems: Models and Measurements , 1973, IEEE Trans. Commun..

[23]  I. Gyongy Approximations of Stochastic Partial Differential Equations , 2002 .

[24]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[25]  Herman Bruyninckx,et al.  Kalman filters for non-linear systems: a comparison of performance , 2004 .

[26]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[27]  R. Bucy,et al.  Digital synthesis of non-linear filters , 1971 .

[28]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[29]  Simon Haykin,et al.  Optimum nonlinear filtering , 1997, IEEE Trans. Signal Process..

[30]  Nando de Freitas,et al.  Sequential Monte Carlo in Practice , 2001 .

[31]  David J. Salmond Mixture reduction algorithms for target tracking in clutter , 1990 .

[32]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[33]  R. Klein,et al.  Implementation of non-linear estimators using monospline , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[34]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[35]  Jason L. Williams Gaussian Mixture Reduction for Tracking Multiple Maneuvering Targets in Clutter , 2003 .

[36]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[37]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[38]  I. Bilik,et al.  Target tracking in glint noise environment using nonlinear non-Gaussian Kalman filter , 2006, 2006 IEEE Conference on Radar.

[39]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[40]  Venkatarama Krishnan,et al.  Probability and Random Processes: Krishnan/Probability and Random Processes , 2006 .

[41]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[42]  E. Wong,et al.  Stochastic Processes in Engineering Systems , 1984 .

[43]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[44]  D. Salmond Mixture reduction algorithms for target tracking , 1989 .

[45]  A. F. M. Smith,et al.  Progress with numerical and graphical methods for practical Bayesian statistics , 1987 .

[46]  Michael I. Jordan Graphical Models , 2003 .

[47]  William H. Press,et al.  Numerical recipes in C , 2002 .

[48]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[49]  Robert J. Elliott,et al.  Measure Theory and Filtering: Preface , 2004 .

[50]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[51]  G. Hewer,et al.  Robust Preprocessing for Kalman Filtering of Glint Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[52]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[53]  B. Øksendal Stochastic Differential Equations , 1985 .

[54]  R. Wishner,et al.  Suboptimal state estimation for continuous-time nonlinear systems from discrete noisy measurements , 1968 .

[55]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[57]  Richard S. Bucy,et al.  Nonlinear Filter Representation via Spline Functions , 1974 .

[58]  Nikos A. Vlassis,et al.  Accelerated EM-based clustering of large data sets , 2006, Data Mining and Knowledge Discovery.

[59]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[60]  Subhash Challa,et al.  Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature , 2000, IEEE Trans. Signal Process..

[61]  H. Kushner Dynamical equations for optimal nonlinear filtering , 1967 .

[62]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[63]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[64]  S. Lakshmivarahan,et al.  Probability and Random Processes , 2007 .

[65]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[66]  Arun N. Netravali,et al.  Optimal spline digital simulators of analog filters , 1971 .

[67]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[68]  D. Bertsekas Incremental least squares methods and the extended Kalman filter , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.