Ensembl regulation resources

New experimental techniques in epigenomics allow researchers to assay a diversity of highly dynamic features such as histone marks, DNA modifications or chromatin structure. The study of their fluctuations should provide insights into gene expression regulation, cell differentiation and disease. The Ensembl project collects and maintains the Ensembl regulation data resources on epigenetic marks, transcription factor binding and DNA methylation for human and mouse, as well as microarray probe mappings and annotations for a variety of chordate genomes. From this data, we produce a functional annotation of the regulatory elements along the human and mouse genomes with plans to expand to other species as data becomes available. Starting from well-studied cell lines, we will progressively expand our library of measurements to a greater variety of samples. Ensembl’s regulation resources provide a central and easy-to-query repository for reference epigenomes. As with all Ensembl data, it is freely available at http://www.ensembl.org, from the Perl and REST APIs and from the public Ensembl MySQL database server at ensembldb.ensembl.org. Database URL: http://www.ensembl.org

[1]  Albert J. Vilella,et al.  Ensembl comparative genomics resources , 2016, Database J. Biol. Databases Curation.

[2]  Cameron S. Osborne,et al.  The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements , 2015, Genome research.

[3]  P. Flicek,et al.  The Ensembl Regulatory Build , 2015, Genome Biology.

[4]  C. Ponting,et al.  RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts , 2015, Genome research.

[5]  Alessandro Vullo,et al.  Ensembl 2015 , 2014, Nucleic Acids Res..

[6]  Alessandro Vullo,et al.  The Ensembl REST API: Ensembl Data for Any Language , 2014, Bioinform..

[7]  William Stafford Noble,et al.  Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression , 2014, bioRxiv.

[8]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[9]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[10]  David J. Arenillas,et al.  JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles , 2013, Nucleic Acids Res..

[11]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[12]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[13]  William Stafford Noble,et al.  Integrative annotation of chromatin elements from ENCODE data , 2012, Nucleic acids research.

[14]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[15]  William Stafford Noble,et al.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation , 2012, Nature Methods.

[16]  Thomas Lengauer,et al.  BLUEPRINT to decode the epigenetic signature written in blood , 2012, Nature Biotechnology.

[17]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[18]  Vijay K. Tiwari,et al.  DNA-binding factors shape the mouse methylome at distal regulatory regions , 2011, Nature.

[19]  Nectarios Koziris,et al.  TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support , 2011, Nucleic Acids Res..

[20]  Syed Haider,et al.  Ensembl BioMarts: a hub for data retrieval across taxonomic space , 2011, Database J. Biol. Databases Curation.

[21]  C. Carlson,et al.  Principles for the post-GWAS functional characterization of cancer risk loci , 2011, Nature Genetics.

[22]  S. Andrews,et al.  Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications , 2011, Bioinform..

[23]  Cory Y. McLean,et al.  Human-specific loss of regulatory DNA and the evolution of human-specific traits , 2011, Nature.

[24]  K. Robasky,et al.  UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein–DNA interactions , 2010, Nucleic Acids Res..

[25]  Ying Cheng,et al.  The European Nucleotide Archive , 2010, Nucleic Acids Res..

[26]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[27]  B. Ballester,et al.  Consistent annotation of gene expression arrays , 2010, BMC Genomics.

[28]  James A. Smith,et al.  Using caching and optimization techniques to improve performance of the Ensembl website , 2010, BMC Bioinformatics.

[29]  Laurent Gil,et al.  Ensembl variation resources , 2010, BMC Genomics.

[30]  G. Crawford,et al.  DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. , 2010, Cold Spring Harbor protocols.

[31]  Lee E. Edsall,et al.  Human DNA methylomes at base resolution show widespread epigenomic differences , 2009, Nature.

[32]  I. Amit,et al.  Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome , 2009, Science.

[33]  E. Ukkonen,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[34]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[35]  L. Liang,et al.  A genome-wide association study of global gene expression , 2007, Nature Genetics.

[36]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[37]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[38]  V. Iyer,et al.  FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. , 2007, Genome research.

[39]  P. Fraser,et al.  Nuclear organization of the genome and the potential for gene regulation , 2007, Nature.

[40]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[41]  J. Dekker,et al.  Mapping networks of physical interactions between genomic elements using 5C technology , 2007, Nature Protocols.

[42]  Michael B. Stadler,et al.  Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome , 2007, Nature Genetics.

[43]  R. Redon,et al.  Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes , 2007, Science.

[44]  Michael R. Green,et al.  Transcriptional regulatory elements in the human genome. , 2006, Annual review of genomics and human genetics.

[45]  Inna Dubchak,et al.  VISTA Enhancer Browser—a database of tissue-specific human enhancers , 2006, Nucleic Acids Res..

[46]  I. Simon,et al.  Evidence for an instructive mechanism of de novo methylation in cancer cells , 2006, Nature Genetics.

[47]  A. Bird,et al.  Genomic DNA methylation: the mark and its mediators. , 2006, Trends in biochemical sciences.

[48]  D. Reinberg,et al.  The key to development: interpreting the histone code? , 2005, Current opinion in genetics & development.

[49]  T. Andrews,et al.  The Ensembl automatic gene annotation system. , 2004, Genome research.

[50]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.

[51]  A. Bird,et al.  Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals , 2003, Nature Genetics.

[52]  J. Herman,et al.  Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours , 2002, The Journal of pathology.

[53]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[54]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[55]  J. Gustafsson,et al.  Estrogen target tissue determines alternative promoter utilization of the human estrogen receptor gene in osteoblasts and tumor cell lines. , 1995, Endocrinology.

[56]  H. Chandler Database , 1985 .

[57]  A. Sahu An Integrated Encyclopedia of DNA Elements in the Human Genome , 2016 .

[58]  A. Brazma,et al.  Databases and ontologies Advance Access publication March 3, 2010 Modeling sample variables with an Experimental Factor Ontology , 2009 .

[59]  S. Grewal,et al.  Heterochromatin revisited , 2007, Nature Reviews Genetics.

[60]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[61]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[62]  W. McLaren,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .