Stochastic solutions for fractional wave equations

A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one-half the order of the fractional time derivative.

[1]  Mark M. Meerschaert,et al.  Triangular array limits for continuous time random walks , 2008 .

[2]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[3]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[4]  E. Bazhlekova Subordination principle for fractional evolution equations , 1999 .

[5]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[6]  Mark M Meerschaert,et al.  Analytical time-domain Green's functions for power-law media. , 2008, The Journal of the Acoustical Society of America.

[7]  Mark M Meerschaert,et al.  INVERSE STABLE SUBORDINATORS. , 2013, Mathematical modelling of natural phenomena.

[8]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[9]  Yasuhiro Fujita,et al.  INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION I(Martingales and Related Topics) , 1989 .

[10]  R. Gorenflo,et al.  Multi-index Mittag-Leffler Functions , 2014 .

[11]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[12]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[13]  Mark M. Meerschaert,et al.  Space–Time Duality for Fractional Diffusion , 2009, Journal of Applied Probability.

[14]  Emilia Bazhlekova,et al.  Fractional evolution equations in Banach spaces , 2001 .

[15]  Yuji Kasahara,et al.  Limit Theorems of Occupation Times for Markov Processes , 1976 .

[16]  L. Bondesson,et al.  Infinite divisibility of random variables and their integer parts , 1996 .

[17]  Francis A. Duck,et al.  Physical properties of tissue : a comprehensive reference book , 1990 .

[18]  Thomas L. Szabo,et al.  Time domain wave equations for lossy media obeying a frequency power law , 1994 .

[19]  N. Bingham Maxima of sums of random variables and suprema of stable processes , 1973 .

[20]  L. Chaumont,et al.  A new fluctuation identity for Levy processes and some applications , 2001 .

[21]  Bradley E. Treeby,et al.  Erratum: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian [J. Acoust. Soc. Am. 127, 2741–2748 (2010)] , 2011 .

[22]  Julia,et al.  Vector-valued Laplace Transforms and Cauchy Problems , 2011 .

[23]  B. Cox,et al.  Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. , 2010, The Journal of the Acoustical Society of America.

[24]  M. Meerschaert,et al.  Reflected Spectrally Negative Stable Processes and their Governing Equations , 2013, 1301.5605.

[25]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[26]  Stochastic solution to a time-fractional attenuated wave equation , 2012, Nonlinear dynamics.

[27]  R. Wolpert Lévy Processes , 2000 .