A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer

[1]  F. Francescangeli,et al.  Stem Cell Plasticity and Dormancy in the Development of Cancer Therapy Resistance , 2019, Front. Oncol..

[2]  Yibin Kang,et al.  Context-dependent EMT programs in cancer metastasis , 2019, The Journal of experimental medicine.

[3]  D. Kerr,et al.  An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance , 2019, Oncogenesis.

[4]  T. Brabletz,et al.  Non-redundant functions of EMT transcription factors , 2019, Nature Cell Biology.

[5]  R. Sreekumar,et al.  Assessment of Nuclear ZEB2 as a Biomarker for Colorectal Cancer Outcome and TNM Risk Stratification , 2018, JAMA network open.

[6]  J. Tabernero,et al.  TET2 controls chemoresistant slow-cycling cancer cell survival and tumor recurrence , 2018, The Journal of clinical investigation.

[7]  S. Buczacki,et al.  Itraconazole perturbs colorectal cancer dormancy through SUFU-mediated WNT inhibition , 2018, Molecular & cellular oncology.

[8]  S. Ramaswamy,et al.  AKT1low quiescent cancer cells persist after neoadjuvant chemotherapy in triple negative breast cancer , 2017, Breast Cancer Research.

[9]  S. Ramaswamy,et al.  Persistence of AKT1 low quiescent cancer cells after neoadjuvant chemotherapy in triple negative breast cancer patients. , 2017 .

[10]  R. Weinberg,et al.  EMT, CSCs, and drug resistance: the mechanistic link and clinical implications , 2017, Nature Reviews Clinical Oncology.

[11]  W. Hahn,et al.  The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. , 2017, Blood.

[12]  H. Fröhlich,et al.  The EMT transcription factor Zeb2 controls adult murine hematopoietic differentiation by regulating cytokine signaling. , 2017, Blood.

[13]  W. Hiddemann,et al.  Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia , 2016, Cancer cell.

[14]  D. Lambrechts,et al.  Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching , 2016, British Journal of Cancer.

[15]  G. Stassi,et al.  A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype , 2016, Oncogene.

[16]  L. Ricci-Vitiani,et al.  Cancer Stem Cell‐Based Models of Colorectal Cancer Reveal Molecular Determinants of Therapy Resistance , 2016, Stem cells translational medicine.

[17]  Chih-Yang Wang,et al.  Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells , 2015, Nature.

[18]  M. Zheng,et al.  The metastasis suppressor, NDRG1, inhibits “stemness” of colorectal cancer via down-regulation of nuclear β-catenin and CD44 , 2015, Oncotarget.

[19]  Jeffrey S. Morris,et al.  The Consensus Molecular Subtypes of Colorectal Cancer , 2015, Nature Medicine.

[20]  S. Anand,et al.  Kinase-independent role for CRAF-driving tumour radioresistance via CHK2 , 2015, Nature Communications.

[21]  Camille Stephan-Otto Attolini,et al.  Stromal gene expression defines poor-prognosis subtypes in colorectal cancer , 2015, Nature Genetics.

[22]  M. Todaro,et al.  Colorectal cancer stem cells: from the crypt to the clinic. , 2014, Cell stem cell.

[23]  V. Espina,et al.  Reverse Phase Protein Arrays: Mapping the Path Towards Personalized Medicine , 2014, Molecular Diagnosis & Therapy.

[24]  P. Bragado,et al.  Mechanisms of disseminated cancer cell dormancy: an awakening field , 2014, Nature Reviews Cancer.

[25]  M. Biffoni,et al.  Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer , 2014, Cell Death and Differentiation.

[26]  Steven J. M. Jones,et al.  Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. , 2014, Cancer cell.

[27]  A. Krešo,et al.  Evolution of the cancer stem cell model. , 2014, Cell stem cell.

[28]  V. Gogvadze,et al.  Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments , 2014, Nature Communications.

[29]  A. Krešo,et al.  Self-renewal as a therapeutic target in human colorectal cancer , 2013, Nature Medicine.

[30]  P. Bragado,et al.  TGFβ2 dictates disseminated tumour cell fate in target organs through TGFβ-RIII and p38α/β signalling , 2013, Nature Cell Biology.

[31]  S. Thorgeirsson,et al.  NANOG modulates stemness in human colorectal cancer , 2013, Oncogene.

[32]  J. Taunton,et al.  p90 RSK2 Mediates Antianoikis Signals by both Transcription-Dependent and -Independent Mechanisms , 2013, Molecular and Cellular Biology.

[33]  Florian Markowetz,et al.  Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions , 2013, Nature Medicine.

[34]  H. Rui,et al.  Dormant cancer cells contribute to residual disease in a model of reversible pancreatic cancer. , 2013, Cancer research.

[35]  John M. Ashton,et al.  BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. , 2013, Cell stem cell.

[36]  Andrew M. K. Brown,et al.  Variable Clonal Repopulation Dynamics Influence Chemotherapy Response in Colorectal Cancer , 2013, Science.

[37]  M. Biffoni,et al.  Proliferation State and Polo‐Like Kinase1 Dependence of Tumorigenic Colon Cancer Cells , 2012, Stem cells.

[38]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth following chemotherapy , 2012, Nature.

[39]  M. Koch,et al.  Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. , 2011, Cell stem cell.

[40]  M. Esteller,et al.  Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis , 2011, Oncogene.

[41]  Giovanni Calcagnini,et al.  A Systems Biology Strategy on Differential Gene Expression Data Discloses Some Biological Features of Atrial Fibrillation , 2010, PloS one.

[42]  Simone Brabletz,et al.  The ZEB/miR‐200 feedback loop—a motor of cellular plasticity in development and cancer? , 2010, EMBO reports.

[43]  Alexander Roesch,et al.  A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth , 2010, Cell.

[44]  N. Cho,et al.  CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells , 2010, Oncogene.

[45]  Louis Vermeulen,et al.  Wnt activity defines colon cancer stem cells and is regulated by the microenvironment , 2010, Nature Cell Biology.

[46]  Satoshi Tanaka,et al.  Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML , 2010, Nature Biotechnology.

[47]  S. Krauss,et al.  Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma , 2009, Clinical & Experimental Metastasis.

[48]  M. Todaro,et al.  Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity , 2008, Proceedings of the National Academy of Sciences.

[49]  Wenjun Guo,et al.  The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells , 2008, Cell.

[50]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[51]  W. Min,et al.  Chemoresistance of endothelial cells induced by basic fibroblast growth factor depends on Raf-1-mediated inhibition of the proapoptotic kinase, ASK1. , 2007, Cancer research.

[52]  Barbara J. Wold,et al.  Mining gene expression data by interpreting principal components , 2006, BMC Bioinformatics.

[53]  S. Elledge,et al.  Multiple Tumor Suppressor Pathways Negatively Regulate Telomerase , 2003, Cell.

[54]  G. Berx,et al.  The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. , 2001, Molecular cell.

[55]  Xuan Sun,et al.  Akt Phosphorylates and Negatively Regulates Apoptosis Signal-Regulating Kinase 1 , 2001, Molecular and Cellular Biology.

[56]  L. Liotta,et al.  Utilization of Proteomic Technologies for Precision Oncology Applications. , 2019, Cancer treatment and research.