Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem

We consider in this paper the time-dependent two-phase Stefan problem and derive a posteriori error estimates and adaptive strategies for its conforming spatial and backward Euler temporal discretizations. Regularization of the enthalpy-temperature function and iterative linearization of the arising systems of nonlinear algebraic equations are considered. Our estimators yield a guaranteed and fully computable upper bound on the dual norm of the residual, as well as on the L2(L2) error of the temperature and the L2(H1) error of the enthalpy. Moreover, they allow to distinguish the space, time, regularization, and linearization error components. An adaptive algorithm is proposed, which ensures computational savings through the online choice of a sufficient regularization parameter, a stopping criterion for the linearization iterations, local space mesh refinement, time step adjustment, and equilibration of the spatial and temporal errors. We also prove the efficiency of our estimate. Our analysis is quite general and is not focused on a specific choice of the space discretization and of the linearization. As an example, we apply it to the vertex-centered finite volume (finite element with mass lumping and quadrature) and Newton methods. Numerical results illustrate the effiectiveness of our estimates and the performance of the adaptive algorithm.

[1]  G. Meyer Multidimensional Stefan Problems , 1973 .

[2]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[3]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[4]  Ricardo H. Nochetto,et al.  AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .

[5]  A. Ern,et al.  Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids , 2009 .

[6]  Martin Vohralík A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization , 2008 .

[7]  Noel J. Walkington,et al.  Co-volume methods for degenerate parabolic problems , 1993 .

[8]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[9]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[10]  Thierry Gallouët,et al.  Finite volumes and nonlinear diffusion equations , 1998 .

[11]  A. Ern,et al.  Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .

[12]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[13]  Martin Vohralík,et al.  A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids , 2011 .

[14]  Clément Cancès,et al.  An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow , 2013, Math. Comput..

[15]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[16]  Rüdiger Verfürth A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[17]  Long Chen FINITE VOLUME METHODS , 2011 .

[18]  Martin Vohralík,et al.  A Framework for Robust A Posteriori Error Control in Unsteady Nonlinear Advection-Diffusion Problems , 2013, SIAM J. Numer. Anal..

[19]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[20]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[21]  Rüdiger Verfürth,et al.  A posteriori error estimates for finite element discretizations of the heat equation , 2003 .

[22]  Petra Wittbold,et al.  On mild and weak solutions of elliptic-parabolic problems , 1996, Advances in Differential Equations.

[23]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[24]  Alexandre Ern,et al.  Adaptive inexact Newton methods for discretizations of nonlinear diffusion PDEs . I . General theory and a posteriori stopping criteria ∗ , 2012 .

[25]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[26]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[27]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[28]  Martin Vohralík,et al.  A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..

[29]  Martin Vohralík,et al.  Adaptive inexact Newton methods for discretizations of nonlinear diffusion PDEs. II. Applications , 2012 .

[30]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[31]  Avner Friedman,et al.  The Stefan problem in several space variables , 1968 .

[32]  Charles M. Elliott,et al.  On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem , 1981 .

[33]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[34]  George Beckett,et al.  A moving mesh finite element method for the two-dimensional Stefan problems , 2001 .

[35]  Pierre-Alain Gremaud,et al.  On a numerical approach to Stefan-like problems , 1991 .

[36]  Ricardo H. Nochetto,et al.  Error estimates for multidimensional singular parabolic problems , 1987 .

[37]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[38]  Felix Otto,et al.  L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .

[39]  J. Ciavaldini Analyse Numerique d’un Probleme de Stefan a Deux Phases Par une Methode d’Elements Finis , 1975 .

[40]  Marco Picasso,et al.  An adaptive finite element algorithm for a two-dimensional stationary Stefan-like problem , 1995 .

[41]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[42]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems , 1994 .

[43]  Claudio Verdi,et al.  The Combined Use of a Nonlinear Chernoff Formula with a Regularization Procedure for Two-Phase Stefan Problems , 1988 .

[44]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[45]  K. Karlsen,et al.  Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations , 2009, 0901.0816.

[46]  Willi Jäger,et al.  Solution of porous medium type systems by linear approximation schemes , 1991 .

[47]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[48]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[49]  Ricardo H. Nochetto,et al.  An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..

[50]  Carl Tim Kelley,et al.  Solution of the time discretized Stefan problem by Newton's method , 1990 .

[51]  Libor Čermák,et al.  Transformation of dependent variables and the finite element solution of nonlinear evolution equations , 1980 .

[52]  Mauricio Sepúlveda,et al.  Error estimates for the finite volume discretization for the porous medium equation , 2010, J. Comput. Appl. Math..

[53]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[54]  Joseph W. Jerome,et al.  Error estimates for the multidimensional two-phase Stefan problem , 1982 .

[55]  Martin Vohralík Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients , 2011, J. Sci. Comput..