MULTIPRED2: A computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles

[1]  Morten Nielsen,et al.  Prediction of epitopes using neural network based methods. , 2011, Journal of immunological methods.

[2]  D. Keskin,et al.  A Conserved E7-derived Cytotoxic T Lymphocyte Epitope Expressed on Human Papillomavirus 16-transformed HLA-A2+ Epithelial Cancers , 2010, The Journal of Biological Chemistry.

[3]  Uthaman Gowthaman,et al.  Evaluation of different generic in silico methods for predicting HLA class I binding peptide vaccine candidates using a reverse approach , 2010, Amino Acids.

[4]  Vladimir Brusic,et al.  Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research , 2008, BMC Bioinformatics.

[5]  James Robinson,et al.  The IMGT/HLA database , 2008, Nucleic Acids Res..

[6]  Morten Nielsen,et al.  Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan , 2008, PLoS Comput. Biol..

[7]  V. Brusic,et al.  Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research , 2008, BMC Immunology.

[8]  V. Brusic,et al.  Hotspot Hunter: a computational system for large-scale screening and selection of candidate immunological hotspots in pathogen proteomes , 2008, BMC Bioinformatics.

[9]  Bjoern Peters,et al.  HLA class I supertypes: a revised and updated classification , 2008, BMC Immunology.

[10]  Tin Wee Tan,et al.  Evolutionarily Conserved Protein Sequences of Influenza A Viruses, Avian and Human, as Vaccine Targets , 2007, PloS one.

[11]  O. Lund,et al.  NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence , 2007, PloS one.

[12]  I. Bozic,et al.  Prediction of supertype-specific HLA class I binding peptides using support vector machines. , 2007, Journal of immunological methods.

[13]  Derin B Keskin,et al.  Elicitation from virus-naive individuals of cytotoxic T lymphocytes directed against conserved HIV-1 epitopes , 2006, Medical immunology.

[14]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[15]  V. Brusic,et al.  SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens , 2006, Virology.

[16]  Ellis L. Reinherz,et al.  PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands , 2005, Nucleic Acids Res..

[17]  Vladimir Brusic,et al.  MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides , 2005, Nucleic Acids Res..

[18]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[19]  D. Flower,et al.  Identifiying Human MHC Supertypes Using Bioinformatic Methods , 2004, The Journal of Immunology.

[20]  O. Lund,et al.  Definition of supertypes for HLA molecules using clustering of specificity matrices , 2004, Immunogenetics.

[21]  Scott A. Brown,et al.  Clustering of Th Cell Epitopes on Exposed Regions of HIV Envelope Despite Defects in Antibody Activity 1 , 2003, The Journal of Immunology.

[22]  Jia-huai Wang,et al.  Structural basis of T cell recognition of peptides bound to MHC molecules. , 2002, Molecular immunology.

[23]  K. Cao,et al.  Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. , 2001, Human immunology.

[24]  S. K. Kim,et al.  Epitope clusters in the major outer membrane protein of Chlamydia trachomatis. , 2001, Current opinion in immunology.

[25]  S G Marsh,et al.  The HLA dictionary 2001: a summary of HLA-A, -B, -C, -DRB1/3/4/5, -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR, and -DQ antigens. , 2001, Human immunology.

[26]  P. Doherty,et al.  Localization of CD4+ T cell epitope hotspots to exposed strands of HIV envelope glycoprotein suggests structural influences on antigen processing , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Kostyu,et al.  Ramifications of HLA class I polymorphism and population genetics for vaccine development , 2001, Genetic epidemiology.

[28]  J. Sidney,et al.  Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism , 1999, Immunogenetics.

[29]  A Sette,et al.  Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. , 1996, Immunology today.

[30]  M. A. Saper,et al.  Structure of the human class I histocompatibility antigen, HLA-A2 , 1987, Nature.

[31]  E. Reinherz,et al.  Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Morten Nielsen,et al.  Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods , 2009, Bioinform..

[33]  M Setterholm,et al.  The HLA dictionary 2008: a summary of HLA-A, -B, -C, -DRB1/3/4/5, and -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR, and -DQ antigens. , 2009, Tissue antigens.

[34]  S. Surman,et al.  CD4+T細胞エピトープホットスポットのHIVエンベロープ糖蛋白質の露出鎖への局在は,抗原処理への構造的影響を示唆する , 2001 .