Transit timing variation and transmission spectroscopy analyses of the hot Neptune GJ3470b

The transit method is one of the most effective detection method, detecting more than 2,700 exoplanets, including over 2,300 by Kepler (Morton et al., ApJ 822:86, 2016). The transit method can detect planets ranging in size from Earth to larger than Jupiter. The transit timing variation (TTV) method has been used to find at least 10 additional exoplanets and a hundred of candidates (Agol et al., MNRAS 359:567, 2005, Holman and Murray, Science 307:1288, 2005, Holman et al., Science 330:51, 2010, Ford et al., ApJ 750:113, 2012a, Ford et al., ApJ 756:185, 2012b, Fabrycky et al., ApJ 750:114, 2012, Steffen et al., MNRAS 421:2342, 2012a, Steffen et al. ApJ 756:186, 2012b, Steffen et al. MNRAS 428:1077, 2013, Mazeh et al., ApJS 208:16, 2013).

[1]  M. R. Haas,et al.  FALSE POSITIVE PROBABILITIES FOR ALL KEPLER OBJECTS OF INTEREST: 1284 NEWLY VALIDATED PLANETS AND 428 LIKELY FALSE POSITIVES , 2016, 1605.02825.

[2]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. VII. THE FIRST FULLY UNIFORM CATALOG BASED ON THE ENTIRE 48-MONTH DATA SET (Q1–Q17 DR24) , 2015, 1512.06149.

[3]  T. Barman,et al.  RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B , 2015, 1511.05601.

[4]  E. Agol,et al.  TRANSIT TIMING TO FIRST ORDER IN ECCENTRICITY , 2015, 1509.01623.

[5]  E. Ford,et al.  The mass of the Mars-sized exoplanet Kepler-138 b from transit timing , 2015, Nature.

[6]  A. Youdin,et al.  MINIMUM CORE MASSES FOR GIANT PLANET FORMATION WITH REALISTIC EQUATIONS OF STATE AND OPACITIES , 2014, 1412.5185.

[7]  V. S. Dhillon,et al.  ULTRASPEC: a high-speed imaging photometer on the 2.4-m Thai National Telescope , 2014, 1408.2733.

[8]  T. Barman,et al.  Warm ice giant GJ 3470b - II. Revised planetary and stellar parameters from optical to near-infrared transit photometry , 2014, 1406.6437.

[9]  N. Santos,et al.  Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope , 2014, 1405.1056.

[10]  Howard Isaacson,et al.  Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars , 2014, Proceedings of the National Academy of Sciences.

[11]  A. Burrows,et al.  MASS-RADIUS RELATIONS AND CORE-ENVELOPE DECOMPOSITIONS OF SUPER-EARTHS AND SUB-NEPTUNES , 2014, 1402.4818.

[12]  Kento Masuda,et al.  VERY LOW DENSITY PLANETS AROUND KEPLER-51 REVEALED WITH TRANSIT TIMING VARIATIONS AND AN ANOMALY SIMILAR TO A PLANET–PLANET ECLIPSE EVENT , 2014, 1401.2885.

[13]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[14]  G. Marcy,et al.  THE MASS–RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII , 2013, 1312.0936.

[15]  J. Fortney,et al.  UNDERSTANDING THE MASS–RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION , 2013, 1311.0329.

[16]  V. S. Dhillon,et al.  Optical transmission photometry of the highly inflated exoplanet WASP-17b , 2013, 1310.3893.

[17]  Jack J. Lissauer,et al.  KEPLER-79'S LOW DENSITY PLANETS , 2013, 1310.2642.

[18]  D. Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2013, Nature.

[19]  G. Piotto,et al.  The blue sky of GJ3470b: the atmosphere of a low-mass planet unveiled by ground-based photometry , 2013, 1308.6765.

[20]  Travis Barman,et al.  Warm ice giant GJ 3470b. I. A flat transmission spectrum indicates a hazy, low-methane, and/or metal-rich atmosphere , 2013, 1308.6580.

[21]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[22]  Howard Isaacson,et al.  ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES , 2013, 1303.0227.

[23]  Michitoshi Yoshida,et al.  OPTICAL-TO-NEAR-INFRARED SIMULTANEOUS OBSERVATIONS FOR THE HOT URANUS GJ3470b: A HINT OF A CLOUD-FREE ATMOSPHERE , 2013, 1302.7257.

[24]  M. Bottom,et al.  USING HIGH-RESOLUTION OPTICAL SPECTRA TO MEASURE INTRINSIC PROPERTIES OF LOW-MASS STARS: NEW PROPERTIES FOR KOI-314 AND GJ 3470 , 2013, 1302.6231.

[25]  N. Santos,et al.  SPITZER OBSERVATIONS OF GJ 3470 b: A VERY LOW-DENSITY NEPTUNE-SIZE PLANET ORBITING A METAL-RICH M DWARF , 2013, 1301.6555.

[26]  Tsevi Mazeh,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. VIII. CATALOG OF TRANSIT TIMING MEASUREMENTS OF THE FIRST TWELVE QUARTERS , 2013, 1301.5499.

[27]  Tx,et al.  Transit timing observations from Kepler - VII. Confirmation of 27 planets in 13 multiplanet systems via transit timing variations and orbital stability , 2012, 1208.3499.

[28]  David J Armstrong,et al.  A hot Uranus transiting the nearby M dwarf GJ 3470 - Detected with HARPS velocimetry. Captured in transit with TRAPPIST photometry , 2012, 1206.5307.

[29]  John C. Geary,et al.  Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities , 2012, Science.

[30]  A. Burrows,et al.  THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER “SUPER-EARTHS” , 2012, 1203.1921.

[31]  Batavia,et al.  Transit timing observations from Kepler - III. : Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations , 2012, 1201.5412.

[32]  Howard Isaacson,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. II. CONFIRMATION OF TWO MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION ANALYSIS , 2012, 1201.5409.

[33]  M. R. Haas,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS , 2012, 1201.5415.

[34]  N. Santos,et al.  Degeneracy in the characterization of non-transiting planets from transit timing variations , 2012, 1201.2080.

[35]  Il,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. VI. POTENTIALLY INTERESTING CANDIDATE SYSTEMS FROM FOURIER-BASED STATISTICAL TESTS , 2012, 1201.1873.

[36]  K. Kinemuchi,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. V. TRANSIT TIMING VARIATION CANDIDATES IN THE FIRST SIXTEEN MONTHS FROM POLYNOMIAL MODELS , 2012, 1201.1892.

[37]  Jie Li,et al.  THE KEPLER-19 SYSTEM: A TRANSITING 2.2 R⊕ PLANET AND A SECOND PLANET DETECTED VIA TRANSIT TIMING VARIATIONS , 2011, 1109.1561.

[38]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[39]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[40]  Eric Agol,et al.  Transit Analysis Package: An IDL Graphical User Interface for Exoplanet Transit Photometry , 2011, 1102.1036.

[41]  F. Fressin,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[42]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[43]  E. Ford,et al.  QUANTIFYING THE CHALLENGES OF DETECTING UNSEEN PLANETARY COMPANIONS WITH TRANSIT TIMING VARIATIONS , 2010, 1011.1466.

[44]  Howard Isaacson,et al.  Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations , 2010, Science.

[45]  S. Seager,et al.  Exoplanet Atmospheres , 2010, 1005.4037.

[46]  R. Rafikov CONSTRAINT ON THE GIANT PLANET PRODUCTION BY CORE ACCRETION , 2010, 1004.5139.

[47]  T. Henning,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[48]  J. Fortney,et al.  THE NATURE OF THE ATMOSPHERE OF THE TRANSITING SUPER-EARTH GJ 1214b , 2010, 1001.0976.

[49]  K. F. Huber,et al.  How stellar activity affects the size estimates of extrasolar planets , 2009, 0906.3604.

[50]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[51]  Alessandro Morbidelli,et al.  Mass and Orbit Determination from Transit Timing Variations of Exoplanets , 2008 .

[52]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[53]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[54]  John Southworth,et al.  A method for the direct determination of the surface gravities of transiting extrasolar planets , 2007, 0704.1570.

[55]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[56]  P. Sackett,et al.  A Photometric Diagnostic to Aid in the Identification of Transiting Extrasolar Planets , 2005, astro-ph/0503575.

[57]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[58]  E. Agol,et al.  DHP Framework: Digital Health Passports Using Blockchain - Use case on international tourism during the COVID-19 pandemic , 2004, ArXiv.

[59]  Adriana V. R. Silva Method for Spot Detection on Solar-like Stars , 2003 .

[60]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[61]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[62]  S. Seager,et al.  Atmospheric Lensing and Oblateness Effects during an Extrasolar Planetary Transit , 2001, astro-ph/0103329.

[63]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[64]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[65]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[66]  William J. Borucki,et al.  The photometric method of detecting other planetary systems , 1984 .

[67]  K. Keil,et al.  Protostars and Planets V , 2007 .