How animals move along? Exactly solvable model of superdiffusive spread resulting from animal’s decision making

[1]  Paulo F. C. Tilles,et al.  Statistical mechanics of animal movement: Animals's decision-making can result in superdiffusive spread , 2015 .

[2]  G. Pyke Understanding movements of organisms: it's time to abandon the Lévy foraging hypothesis , 2015 .

[3]  Andy M. Reynolds,et al.  Mussels realize Weierstrassian Lévy walks as composite correlated random walks , 2014, Scientific Reports.

[4]  J. Calabrese,et al.  From Fine-Scale Foraging to Home Ranges: A Semivariance Approach to Identifying Movement Modes across Spatiotemporal Scales , 2014, The American Naturalist.

[5]  Vincent A. A. Jansen,et al.  Comment on “Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity” , 2012, Science.

[6]  H. Stanley,et al.  The Physics of Foraging: An Introduction to Random Searches and Biological Encounters , 2011 .

[7]  F. Weissing,et al.  Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity , 2011, Science.

[8]  O. Ovaskainen,et al.  Characteristic Spatial and Temporal Scales Unify Models of Animal Movement , 2011, The American Naturalist.

[9]  V. Jansen,et al.  Variation in individual walking behavior creates the impression of a Lévy flight , 2011, Proceedings of the National Academy of Sciences.

[10]  J. M. Fryxell,et al.  Foraging theory upscaled: the behavioural ecology of herbivore movement , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  F. Bartumeus,et al.  Optimal search behavior and classic foraging theory , 2009 .

[12]  P. Nouvellet,et al.  Fundamental Insights into the Random Movement of Animals from a Single Distance‐Related Statistic , 2009, The American Naturalist.

[13]  Sergei Petrovskii,et al.  Dispersal in a Statistically Structured Population: Fat Tails Revisited , 2008, The American Naturalist.

[14]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[15]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[16]  R. Menzel,et al.  Displaced honey bees perform optimal scale-free search flights. , 2007, Ecology.

[17]  N. Yoshida,et al.  Estimation for the discretely observed telegraph process , 2006, math/0612784.

[18]  A. Crescenzo,et al.  ON THE EFFECT OF RANDOM ALTERNATING PERTURBATIONS ON HAZARD RATES , 2006, math/0701328.

[19]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[20]  J. Klafter,et al.  Anomalous diffusion spreads its wings , 2005 .

[21]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[22]  F. Bartumeus,et al.  Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Michel Baguette,et al.  Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly , 2003 .

[24]  Masakazu Shimada,et al.  An individual-based model for sex-pheromone-oriented flight patterns of male moths in a local area , 2003 .

[25]  H. Larralde,et al.  Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi) , 2003, Behavioral Ecology and Sociobiology.

[26]  Ran Nathan,et al.  The challenges of studying dispersal , 2001 .

[27]  A. Hastings Transient dynamics and persistence of ecological systems , 2001 .

[28]  D. Kramer,et al.  The Behavioral Ecology of Intermittent Locomotion1 , 2001 .

[29]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[30]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[31]  Gillespie,et al.  Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[33]  R. Balescu Equilibrium and Nonequilibrium Statistical Mechanics , 1991 .

[34]  E. Orsingher Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws , 1990 .

[35]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[36]  Alan Hastings,et al.  Dispersal strategies in patchy environments , 1984 .

[37]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[38]  P. Kareiva,et al.  Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments , 1983, Oecologia.

[39]  P. Kareiva,et al.  Analyzing insect movement as a correlated random walk , 1983, Oecologia.

[40]  M. Kac A stochastic model related to the telegrapher's equation , 1974 .

[41]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[42]  P. Maini,et al.  Dispersal, Individual Movement and Spatial Ecology A Mathematical Perspective , 2013 .

[43]  Sergei Petrovskii,et al.  Dispersal, Individual Movement and Spatial Ecology , 2013 .

[44]  N. Shigesada,et al.  Invasion and the range expansion of species : effects of long-distance dispersal , 2002 .

[45]  P. Turchin Quantitative Analysis Of Movement , 1998 .

[46]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[47]  H. Risken Fokker-Planck Equation , 1984 .

[48]  S. Goldstein ON DIFFUSION BY DISCONTINUOUS MOVEMENTS, AND ON THE TELEGRAPH EQUATION , 1951 .

[49]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .