Study of a new Lif:Mg,Cu,P formulation with enhanced thermal stability and a lower residual TL signal

[1]  K. Tang Dependence of thermoluminescence in LiF:Mg,Cu,Na,Si phosphor on Na dopant concentration and thermal treatment , 2003 .

[2]  B. Liu,et al.  New advances in LiF:Mg,Cu,P TLDs (GR-200A). , 2002, Radiation protection dosimetry.

[3]  B. Liu,et al.  Influence of readout parameters on TL response, re-usability and residual signal in LiF:Mg,Cu,P. , 2002, Radiation protection dosimetry.

[4]  K. Tang Thermal Loss and Recovery of Thermoluminescence Sensitivity in LiF:Mg,Cu,P , 2000 .

[5]  G. Cai,et al.  An Improved LiF:Mg,Cu,P Chip with a Low Residual Signal , 1999 .

[6]  T. Chen,et al.  Role of Copper in LiF:Mg,Cu,P Thermoluminescent Phosphors , 1998 .

[7]  P. Olko,et al.  Properties of Different Thin-Layer LiF:Mg,Cu,P TL Detectors for Beta Dosimetry , 1996 .

[8]  A. Delgado Recent Improvements in LiF:Mg,Ti and LiF:Mg,Cu,P Based Environmental Dosimetry , 1996 .

[9]  J. L. Muñiz,et al.  Computerised Analysis of LiF GR-200 TL Signals: Application to Dose Measurements in the µGy Range , 1995 .

[10]  Y. Horowitz,et al.  Glow Curve Readout of LiF:Mg,Cu,P (GR-200) Chips at Maximum Temperatures Between 240 oC and 280 oC: Elimination of the Residual Signal , 1993 .

[11]  J. Zhu,et al.  Preparation and Characteristics of LiF:Mg,Cu,P Thermoluminescent Material , 1993 .

[12]  Y. Horowitz,et al.  Elimination of the Residual Signal in LiF:Cu,Mg,P , 1992 .

[13]  S. McKeever Measurements of emission spectra during thermoluminescence (TL) from LiF(Mg, Cu, P) TL dosimeters , 1991 .

[14]  W. Shoushan The Dependence of Thermoluminescence Response and Glow Curve Structure of LiF(Mg,CU,P) TL Materials on Mg,Cu,P Dopants Concentration , 1988 .