Inference Based on Conditional Moment Inequalities

In this paper, we propose an instrumental variable approach to constructing confidence sets (CS's) for the true parameter in models defined by conditional moment inequalities/equalities. We show that by properly choosing instrument functions, one can transform conditional moment inequalities/equalities into unconditional ones without losing identification power. Based on the unconditional moment inequalities/equalities, we construct CS's by inverting Cramer�von Mises-type or Kolmogorov�Smirnov-type tests. Critical values are obtained using generalized moment selection (GMS) procedures. We show that the proposed CS's have correct uniform asymptotic coverage probabilities. New methods are required to establish these results because an infinite-dimensional nuisance parameter affects the asymptotic distributions. We show that the tests considered are consistent against all fixed alternatives and typically have power against n-1/2-local alternatives to some, but not all, sequences of distributions in the null hypothesis. Monte Carlo simulations for five different models show that the methods perform well in finite samples.

[1]  I. Molchanov,et al.  Sharp Identi fi cation Regions in Games ∗ , 2008 .

[2]  Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure , 2012 .

[3]  Sokbae Lee,et al.  Nonparametric Tests of Conditional Treatment Effects , 2009 .

[4]  Elie Tamer,et al.  Market Structure and Multiple Equilibria in the Airline Industry , 2009 .

[5]  Philip A. Haile,et al.  Inference with an Incomplete Model of English Auctions , 2000, Journal of Political Economy.

[6]  Francesca Molinari,et al.  Asymptotic Properties for a Class of Partially Identified Models , 2006 .

[7]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[8]  Adam M. Rosen,et al.  Confidence Sets for Partially Identified Parameters that Satisfy a Finite Number of Moment Inequalities , 2006 .

[9]  Federico A. Bugni Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set , 2010 .

[10]  Marc Henry,et al.  Inference in Incomplete Models , 2006, 2102.12257.

[11]  Frank Schorfheide,et al.  Boosting Your Instruments: Estimation with Overidentifying Inequality Moment Conditions , 2006 .

[12]  Azeem M. Shaikh,et al.  Inference for the identified set in partially identified econometric models , 2006 .

[13]  D. Andrews,et al.  Invalidity of the Bootstrap and The M Out Of N Bootstrap for Confidence Interval Endpoints Defined by Moment Inequalities , 2009 .

[14]  Timothy F. Bresnahan,et al.  Empirical models of discrete games , 1991 .

[15]  E. Tamer,et al.  Market Structure and Multiple Equilibria in Airline Markets , 2009 .

[16]  Steven Berry,et al.  Confidence Regions for Parameters in Discrete Games with Multiple Equilibria, with an Application to Discount Chain Store Location , 2004 .

[17]  Ivan A. Canay EL inference for partially identified models: Large deviations optimality and bootstrap validity , 2010 .

[18]  Andrés Aradillas-López,et al.  Identification and Testing in Ascending Auctions with Unobserved Heterogeneity , 2010 .

[19]  Marc Henry,et al.  Set Identification in Models with Multiple Equilibria , 2011, 2102.12249.

[20]  I. Molchanov,et al.  Sharp identification regions in models with convex moment predictions , 2010 .

[21]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[22]  D. Andrews,et al.  Nonparametric Inference Based on Conditional Moment Inequalities , 2011 .

[23]  D. Andrews,et al.  Supplement to INFERENCE BASED ON CONDITIONAL MOMENT INEQUALITIES By , 2010 .

[24]  Larry L. Schumaker,et al.  Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.

[25]  C. Manski,et al.  Monotone Instrumental Variables with an Application to the Returns to Schooling , 1998 .

[26]  Sokbae Lee,et al.  Nonparametric Tests of Conditional Treatment Effects , 2009 .

[27]  D. Andrews,et al.  ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP , 2009, Econometric Theory.

[28]  Yanqin Fan,et al.  Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series , 1999 .

[29]  Herman J. Bierens,et al.  Asymptotic Theory of Integrated Conditional Moment Tests , 1997 .

[30]  J. Pratt Length of Confidence Intervals , 1961 .

[31]  Shakeeb Khan,et al.  Inference on endogenously censored regression models using conditional moment inequalities , 2009 .

[32]  Sokbae Lee,et al.  Intersection bounds: estimation and inference , 2009, 0907.3503.

[33]  H. Bierens Consistent model specification tests , 1982 .

[34]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[35]  Frank Schorfheide,et al.  Bayesian and Frequentist Inference in Partially Identified Models , 2009 .

[36]  Thierry Magnac,et al.  Set Identified Linear Models , 2011 .

[37]  Leonard F. Koziol,et al.  The Selection Problem , 2013 .

[38]  Federico A. Bugni Bootstrap Inference in Partially Identi…ed Models , 2009 .

[39]  Maxwell B. Stinchcombe,et al.  CONSISTENT SPECIFICATION TESTING WITH NUISANCE PARAMETERS PRESENT ONLY UNDER THE ALTERNATIVE , 1998, Econometric Theory.

[40]  Timothy B. Armstrong Weighted KS Statistics for Inference on Conditional Moment Inequalities , 2011, 1112.1023.

[41]  C. Manski,et al.  Inference on Regressions with Interval Data on a Regressor or Outcome , 2002 .

[42]  E. Giné,et al.  Bootstrapping General Empirical Measures , 1990 .

[43]  M. Bhaskara Rao,et al.  Model Selection and Inference , 2000, Technometrics.

[44]  B. M. Pötscher,et al.  MODEL SELECTION AND INFERENCE: FACTS AND FICTION , 2005, Econometric Theory.

[45]  Mikhail Lifshits,et al.  Local Properties of Distributions of Stochastic Functionals , 1998 .

[46]  Oliver Linton,et al.  An Improved Bootstrap Test of Stochastic Dominance , 2009 .

[47]  D. Chetverikov Adaptive test of conditional moment inequalities , 2011, 1201.0167.

[48]  Timothy B. Armstrong Asymptotically exact inference in conditional moment inequality models , 2011, 1112.1024.

[49]  Ignacio N. Lobato,et al.  Consistent Estimation of Models Defined by Conditional Moment Restrictions , 2004 .

[50]  J. Hahn,et al.  Specification testing under moment inequalities , 2008 .

[51]  E. Tamer Incomplete Simultaneous Discrete Response Model with Multiple Equilibria , 2003 .

[52]  Shakeeb Khan,et al.  Inference on Randomly Censored Regression Models Using Conditional Moment Inequalities ∗ , 2006 .

[53]  M. Shubik,et al.  COWLES FOUNDATION FOR RESEARCH IN ECONOMICS , 1991 .

[54]  Pamela Giustinelli Non-parametric bounds on quantiles under monotonicity assumptions: with an application to the Italian education returns , 2011 .

[55]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[56]  Dilation Bootstrap A methodology for constructing confidence regions with partially identified models , 2006 .

[57]  Paul Kabaila,et al.  The Effect of Model Selection on Confidence Regions and Prediction Regions , 1995, Econometric Theory.

[58]  H. Bierens Consistent Model Speci fi cation Tests ∗ , 1982 .

[59]  M. Ponomareva Inference in Models Dened by Conditional Moment Inequalities with Continuous Covariates , 2009 .

[60]  Myoung‐jae Lee,et al.  Bounding quantiles in sample selection models , 1998 .

[61]  K. Hirano,et al.  Impossibility Results for Nondifferentiable Functionals , 2012 .

[62]  D. Andrews,et al.  Similar-on-The-Boundary Tests for Moment Inequalities Exist, But Have Poor Power , 2011 .

[63]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure , 2008 .

[64]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[65]  Joseph P. Romano,et al.  Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .

[66]  D. Andrews,et al.  Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests , 2011, Journal of Econometrics.

[67]  R. Blundell,et al.  Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds , 2004, SSRN Electronic Journal.

[68]  Yoon-Jae Whang,et al.  Testing functional inequalities , 2011, 1208.2733.

[69]  A. Galichon,et al.  A Test of Non-Identifying Restrictions and Confidence Regions for Partially Identified Parameters , 2011 .

[70]  Steven T. Berry Estimation of a Model of Entry in the Airline Industry , 1992 .

[71]  K. Kim Set Estimation and Inference with Models Characterized by Conditional Moment Inequalities , 2008 .

[72]  A. Galichon,et al.  A Test of Non-Identifying Restrictions and Confidence Regions for Partially Identified Parameters , 2009, 2102.04151.

[73]  Patrik Guggenberger,et al.  VALIDITY OF SUBSAMPLING AND “PLUG-IN ASYMPTOTIC” INFERENCE FOR PARAMETERS DEFINED BY MOMENT INEQUALITIES , 2007, Econometric Theory.

[74]  A. Pakes Alternative Models for Moment Inequalities , 2010 .