Molecular Hydrodynamics from Memory Kernels.

The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t^{-3/2}. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius.

[1]  J. Fourier Théorie analytique de la chaleur , 2009 .

[2]  K. Huth Transport , 2015, Canadian Medical Association Journal.

[3]  Lydéric Bocquet FROM A STOCHASTIC TO A MICROSCOPIC APPROACH TO BROWNIAN MOTION , 1998 .

[4]  J. Dufrêche,et al.  Equilibrium and electrokinetic phenomena in charged porous media from microscopic and mesoscopic models: electro-osmosis in montmorillonite , 2003 .

[5]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[6]  J. Hermans,et al.  Effect of Inertia on the Brownian Motion of Rigid Particles in a Viscous Fluid , 1972 .

[7]  J. Hansen,et al.  On the Brownian motion of a massive sphere suspended in a hard-sphere fluid. I. Multiple-time-scale analysis and microscopic expression for the friction coefficient , 1994 .

[8]  L. Forró,et al.  Resonances arising from hydrodynamic memory in Brownian motion , 2011, Nature.

[9]  Aleksandar Donev,et al.  The Stokes-Einstein relation at moderate Schmidt number. , 2013, The Journal of chemical physics.

[10]  Noel Corngold,et al.  Behavior of Autocorrelation Functions , 1972 .

[11]  Lydéric Bocquet,et al.  Flow boundary conditions from nano- to micro-scales. , 2006, Soft matter.

[12]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[13]  Microscopic derivation of non-Markovian thermalization of a Brownian particle , 1996, cond-mat/9606078.

[14]  J. Hermans,et al.  Brownian motion of a spherical particle in a compressible fluid , 1973 .

[15]  P. Turq,et al.  Acoustophoresis Revisited. 1. Electrolyte Solutions , 1995 .

[16]  Bocquet,et al.  Hydrodynamic boundary conditions and correlation functions of confined fluids. , 1993, Physical review letters.

[17]  D. Lévesque,et al.  Molecular-dynamics investigation of tracer diffusion in a simple liquid: test of the Stokes-Einstein law. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[19]  P. Debye,et al.  A Method for the Determination of the Mass of Electrolytic Ions , 1933 .

[20]  J. Hansen,et al.  On the Brownian Motion of a Massive Sphere Suspended in a Hard-Sphere Fluid. lI. Molecular Dynamics Estimates of the , 1994 .

[21]  J. Skinner,et al.  Hydrodynamic boundary conditions, the Stokes–Einstein law, and long-time tails in the Brownian limit , 2003 .

[22]  J. Padding,et al.  Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  B. Rotenberg,et al.  Electrokinetics: insights from simulation on the microscopic scale , 2013 .

[24]  S. Lee,et al.  Viscosity and diffusion constants calculation of n-alkanes by molecular dynamics simulations , 2003 .

[25]  F. Ulm,et al.  Subcontinuum mass transport of condensed hydrocarbons in nanoporous media , 2015, Nature Communications.

[26]  Velocity autocorrelation function of a Brownian particle , 2011, 1110.4027.

[27]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[28]  A. Boyer,et al.  Experimental bulk viscosities of argon, krypton, and xenon near their triple point , 1983 .

[29]  J. Hynes Transient initial condition effects for Brownian particle motion , 1973 .

[30]  I. Oppenheim,et al.  Long-time tails and brownian motion , 1975 .

[31]  Rodolphe Vuilleumier,et al.  Two algorithms to compute projected correlation functions in molecular dynamics simulations. , 2014, The Journal of chemical physics.

[32]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[33]  Irwin Oppenheim,et al.  Molecular theory of Brownian motion , 1970 .

[34]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[35]  L. Bocquet,et al.  Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .