Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars

This paper addresses the problem of mapping natural language sentences to lambda–calculus encodings of their meaning. We describe a learning algorithm that takes as input a training set of sentences labeled with expressions in the lambda calculus. The algorithm induces a grammar for the problem, along with a log-linear model that represents a distribution over syntactic and semantic analyses conditioned on the input sentence. We apply the method to the task of learning natural language interfaces to databases and show that the learned parsers outperform previous methods in two benchmark database domains.

[1]  J. Baker Trainable grammars for speech recognition , 1979 .

[2]  Adwait Ratnaparkhi,et al.  A maximum entropy model for parsing , 1994, ICSLP.

[3]  Peter Thanisch,et al.  Natural language interfaces to databases – an introduction , 1995, Natural Language Engineering.

[4]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[5]  Richard M. Schwartz,et al.  A Fully Statistical Approach to Natural Language Interfaces , 1996, ACL.

[6]  Salim Roukos,et al.  Feature-based language understanding , 1997, EUROSPEECH.

[7]  B. Carpenter,et al.  Type-Logical Semantics , 1997 .

[8]  Mark Steedman,et al.  Surface structure and interpretation , 1996, Linguistic inquiry.

[9]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[10]  Suresh Manandhar,et al.  Unsupervised Lexical Learning with Categorical Grammars Using the LLL Corpus , 2001, Learning Language in Logic.

[11]  Mark Johnson,et al.  Estimators for Stochastic “Unification-Based” Grammars , 1999, ACL.

[12]  Jan Kleindienst,et al.  Hierarchical feature-based translation for scalable natural language understanding , 2000, INTERSPEECH.

[13]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[14]  Raymond J. Mooney,et al.  Using Multiple Clause Constructors in Inductive Logic Programming for Semantic Parsing , 2001, ECML.

[15]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[16]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[17]  James R. Curran,et al.  Log-Linear Models for Wide-Coverage CCG Parsing , 2003, EMNLP.

[18]  Raymond J. Mooney,et al.  Acquiring Word-Meaning Mappings for Natural Language Interfaces , 2011, J. Artif. Intell. Res..

[19]  Mark Steedman,et al.  Wide-Coverage Semantic Representations from a CCG Parser , 2004, COLING.

[20]  Ben Taskar,et al.  Max-Margin Parsing , 2004, EMNLP.

[21]  Oren Etzioni,et al.  Modern Natural Language Interfaces to Databases: Composing Statistical Parsing with Semantic Tractability , 2004, COLING.

[22]  Mark Steedman,et al.  The syntactic process , 2004, Language, speech, and communication.

[23]  Steve J. Young,et al.  Semantic processing using the Hidden Vector State model , 2005, Comput. Speech Lang..