On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits

[1]  D. A. Ritchie,et al.  Electrically driven and electrically tunable quantum light sources , 2017, 1701.04255.

[2]  Carsten Rockstuhl,et al.  Fully integrated quantum photonic circuit with an electrically driven light source , 2016, Nature Photonics.

[3]  O. Schmidt,et al.  Controlling the exciton energy of a nanowire quantum dot by strain fields , 2016 .

[4]  V. Zwiller,et al.  Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits , 2016, IEEE Photonics Journal.

[5]  Dan Dalacu,et al.  Deterministic Integration of Single Photon Sources in Silicon Based Photonic Circuits. , 2016, Nano letters.

[6]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[7]  V. Zwiller,et al.  Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot. , 2016, Nano letters.

[8]  Robert Keil,et al.  Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots , 2016, Nature Communications.

[9]  J. Martín-Sánchez,et al.  Wavelength-tunable sources of entangled photons interfaced with atomic vapours , 2016, Nature Communications.

[10]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[11]  A. Gulinatti,et al.  Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality , 2015, Scientific Reports.

[12]  Qing Li,et al.  Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics , 2015, Nature Photonics.

[13]  Ying Yu,et al.  In situ probing and integration of single self-assembled quantum dots-in-nanowires for quantum photonics , 2015, Nanotechnology.

[14]  Philip H. W. Leong,et al.  Active temporal multiplexing of indistinguishable heralded single photons , 2015, Nature Communications.

[15]  Ting Lei,et al.  Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions , 2014, Scientific Reports.

[16]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[17]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[18]  V. Zwiller,et al.  Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire , 2014, 1407.2833.

[19]  Dirk Englund,et al.  Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide , 2014, Nature Physics.

[20]  Dan Dalacu,et al.  Observation of strongly entangled photon pairs from a nanowire quantum dot , 2014, Nature Communications.

[21]  G. Weihs,et al.  Polarization entangled photons from quantum dots embedded in nanowires. , 2014, Nano letters.

[22]  A. M. Fox,et al.  Monolithic integration of a quantum emitter with a compact on-chip beam-splitter , 2014, 1404.0518.

[23]  K. Jöns,et al.  Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources , 2014, 1403.7174.

[24]  K. Jöns,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, Nature Photonics.

[25]  T. Krauss,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature Communications.

[26]  I. Sagnes,et al.  Bright solid-state sources of indistinguishable single photons , 2013, Nature Communications.

[27]  R. Gross,et al.  Optimisation of NbN thin films on GaAs substrates for in-situ single photon detection in structured photonic devices , 2012, 1212.2038.

[28]  Dan Dalacu,et al.  Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires. , 2012, Nano letters.

[29]  V. Zwiller,et al.  Bright single-photon sources in bottom-up tailored nanowires , 2012, Nature Communications.

[30]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature Communications.

[31]  V. Zwiller,et al.  Crystal phase quantum dots. , 2010, Nano letters.

[32]  P. Charette,et al.  Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties. , 2008, Optics express.

[33]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[34]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[35]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[36]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[37]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[38]  Charles H. Bennett,et al.  Quantum information and computation , 1995, Nature.

[39]  Ephraim Suhir,et al.  Micro- and opto-electronic materials and structures : physics, mechanics, design, reliability, packaging , 2007 .