Cooperative effects by the initiation codon and its flanking regions on translation initiation.

[1]  J. Shine,et al.  The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. D. Schneider,et al.  Characterization of Translational Initiation Sites in E. Coui , 1982 .

[3]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[4]  E. Gren Recognition of messenger RNA during translational initiation in Escherichia coli. , 1984, Biochimie.

[5]  S. Busby,et al.  Point mutations that affect translation initiation in the Escherichia coli gal E gene. , 1985, Journal of molecular biology.

[6]  T. D. Schneider,et al.  Information content of binding sites on nucleotide sequences. , 1986, Journal of molecular biology.

[7]  W. Sebald,et al.  Enhancement of translational efficiency by the Escherichia coli atpE translational initiation region: its fusion with two human genes. , 1986, Gene.

[8]  P. H. Van Knippenberg,et al.  Secondary structure as primary determinant of the efficiency of ribosomal binding sites in Escherichia coli , 1986, Nucleic Acids Res..

[9]  A. C. Looman,et al.  Influence of the codon following the AUG initiation codon on the expression of a modified lacZ gene in Escherichia coli. , 1987, The EMBO journal.

[10]  E. Fuchs,et al.  More than 150 nucleotides flanking the initiation codon contribute to the efficiency of the ribosomal binding site from bacteriophage T7 gene 1. , 1987, Nucleic Acids Research.

[11]  M. Dreyfus,et al.  What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? , 1988, Journal of molecular biology.

[12]  L. Gold,et al.  Posttranscriptional regulatory mechanisms in Escherichia coli. , 1988, Annual review of biochemistry.

[13]  L. Isaksson,et al.  Test System for Measurement of Translational Activity in Vivo , 1988 .

[14]  M. Dreyfus,et al.  Transcription of single-copy hybrid lacZ genes by T7 RNA polymerase in Escherichia coli: mRNA synthesis and degradation can be uncoupled from translation. , 1990, Nucleic acids research.

[15]  C. Petersen Multiple determinants of functional mRNA stability: sequence alterations at either end of the lacZ gene affect the rate of mRNA inactivation , 1991, Journal of bacteriology.

[16]  C. Kurland Codon bias and gene expression , 1991, FEBS letters.

[17]  L. Gold,et al.  Influence of mRNA determinants on translation initiation in Escherichia coli. , 1991, Journal of molecular biology.

[18]  L. Isaksson,et al.  Codon choice and potential complementarity between mRNA downstream of the initiation codon and bases 1471-1480 in 16S ribosomal RNA affects expression of glnS. , 1991, Nucleic acids research.

[19]  An unstructured mRNA region and a 5' hairpin represent important elements of the E. coli translation initiation signal determined by using the bacteriophage T7 gene 1 translation start site. , 1993, Nucleic acids research.

[20]  S. Mottagui-Tabar,et al.  The second to last amino acid in the nascent peptide as a codon context determinant. , 1994, The EMBO journal.

[21]  Jan van Duin,et al.  Control of Translation by mRNA Secondary Structure in Escherichia coli: A Quantitative Analysis of Literature Data , 1994 .

[22]  J. van Duin,et al.  Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. , 1994, Journal of molecular biology.

[23]  H. Noller,et al.  Footprinting mRNA‐ribosome complexes with chemical probes. , 1994, The EMBO journal.

[24]  H. Noller,et al.  Specific protection of 16 S rRNA by translational initiation factors. , 1995, Journal of molecular biology.

[25]  Selection of aminoacyl-tRNAs at sense codons: the size of the tRNA variable loop determines whether the immediate 3' nucleotide to the codon has a context effect. , 1995, Nucleic acids research.

[26]  M. Springer,et al.  The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli , 1996, Molecular microbiology.

[27]  R. Simons,et al.  Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo , 1996, Molecular microbiology.

[28]  C. Gualerzi,et al.  The structure of the translational initiation factor IF1 from E.coli contains an oligomer‐binding motif , 1997, The EMBO journal.

[29]  R. Brimacombe,et al.  The path of mRNA through the bacterial ribosome: a site-directed crosslinking study using new photoreactive derivatives of guanosine and uridine. , 1997, RNA.

[30]  Richard Brimacombe,et al.  The Database of Ribosomal Cross-links: an update , 1999, Nucleic Acids Res..

[31]  J. Perona,et al.  An engineered class I transfer RNA with a class II tertiary fold. , 1999, RNA.

[32]  M. Inouye,et al.  Translational Enhancement by an Element Downstream of the Initiation Codon in Escherichia coli* , 1999, The Journal of Biological Chemistry.

[33]  M. Springer,et al.  Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules. , 1999, Journal of molecular biology.

[34]  V. Tumanyan,et al.  Amino acid composition of protein termini are biased in different manners. , 1999, Protein engineering.

[35]  C. Squires,et al.  Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Kozak Initiation of translation in prokaryotes and eukaryotes. , 1999, Gene.

[37]  W. Tate,et al.  Codon bias at the 3'-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. , 2001, Gene.