An h-p version of the continuous Petrov-Galerkin method for Volterra delay-integro-differential equations

We consider an h-p version of the continuous Petrov-Galerkin time stepping method for Volterra integro-differential equations with proportional delays. We derive a priori error bounds in the L2-, H1- and L∞-norm that are explicit in the local time steps, the local approximation orders, and the local regularity of the exact solution. Numerical experiments are presented to illustrate the theoretical results.

[1]  Thomas P. Wihler,et al.  A note on a norm-preserving continuous Galerkin time stepping scheme , 2016, 1605.05201.

[2]  Jens Lorenz,et al.  An analysis of the petrov—galerkin finite element method , 1978 .

[3]  Alexei Ilyin,et al.  One-Dimensional Interpolation Inequalities, Carlson–Landau Inequalities, and Magnetic Schrödinger Operators , 2015, 1502.01572.

[4]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[5]  Emiko Ishiwata On the Attainable Order of Collocation Methods for the Neutral Functional-Differential Equations with Proportional Delays , 2000, Computing.

[6]  W. H. Enright,et al.  Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay , 1997 .

[7]  Ishtiaq Ali,et al.  Spectral methods for pantograph-type differential and integral equations with multiple delays , 2009 .

[8]  Chengjian Zhang,et al.  Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations , 2004 .

[9]  Yang Xu,et al.  Legendre Spectral Collocation Methods for Volterra Delay-Integro-Differential Equations , 2015, J. Sci. Comput..

[10]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable , 1986 .

[11]  Dominik Schötzau,et al.  hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .

[12]  Hermann Brunner,et al.  Collocation methods for nonlinear Volterra integro-differential equations with infinite delay , 1989 .

[13]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[14]  Yanping Chen,et al.  Legendre Spectral Collocation Methods for Pantograph Volterra Delay-Integro-Differential Equations , 2012, J. Sci. Comput..

[15]  Stefan Vandewalle,et al.  Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays , 2009 .

[16]  Lijun Yi,et al.  An L∞-error Estimate for the h-p Version Continuous Petrov-Galerkin Method for Nonlinear Initial Value Problems , 2015 .

[17]  Jie Shen,et al.  Legendre and Chebyshev dual-Petrov–Galerkin methods for Hyperbolic equations , 2007 .

[18]  Qiumei Huang,et al.  Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type , 2016 .

[19]  Kassem Mustapha,et al.  An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..

[20]  Hehu Xie,et al.  The hp Discontinuous Galerkin Method for Delay Differential Equations with Nonlinear Vanishing Delay , 2013, SIAM J. Sci. Comput..

[21]  Lijun Yi,et al.  An h-p Version of the Continuous Petrov-Galerkin Finite Element Method for Volterra Integro-Differential Equations with Smooth and Nonsmooth Kernels , 2015, SIAM J. Numer. Anal..

[22]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[23]  Wayne H. Enright,et al.  Reliable Approximate Solution of Systems of Volterra Integro-Differential Equations with Time-Dependent Delays , 2011, SIAM J. Sci. Comput..

[24]  D. Schötzau,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[25]  Yanping Chen,et al.  Spectral-Collocation Method for Volterra Delay Integro-Differential Equations with Weakly Singular Kernels , 2016 .

[26]  Wang Zhong-qing,et al.  An $hp$-spectral collocation method for nonlinear Volterra integral equations with vanishing variable delays , 2015 .

[27]  Lijun Yi,et al.  An h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}–p\documentclass[12pt]{minimal} \usepackage{amsma , 2015, Journal of Scientific Computing.

[28]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[29]  Wayne H. Enright,et al.  Superconvergent interpolants for collocation methods applied to Volterra integro-differential equations with delay , 2012 .

[31]  Dominik Schötzau,et al.  hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..

[32]  Tao Lin,et al.  Petrov-Galerkin Methods for Linear Volterra Integro-Differential Equations , 2000, SIAM J. Numer. Anal..

[33]  Thomas P. Wihler,et al.  An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems , 2005, J. Sci. Comput..

[34]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[35]  Ivan P. Gavrilyuk,et al.  Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..