Methodology to design and optimise dispersed continuous carbon fibre composites parts by fused filament fabrication

[1]  J. Aurrekoetxea,et al.  Quasi-static and dynamic crush behaviour of 3D printed thin-walled profiles reinforced with continuous carbon and glass fibres , 2021, Composites Part B: Engineering.

[2]  A. Leon,et al.  Post-processing effects on microstructure, interlaminar and thermal properties of 3D printed continuous carbon fibre composites , 2021 .

[3]  David Garoz Gómez,et al.  Multiscale framework. Concept of geometry, materials, load conditions, and homogenization , 2021 .

[4]  C. Pascual-González,et al.  An approach to analyse the factors behind the micromechanical response of 3D-printed composites , 2020 .

[5]  C. Pascual-González,et al.  Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure , 2019 .

[6]  J. M. Chacón,et al.  Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties , 2019, Composites Science and Technology.

[7]  Alfredo Güemes,et al.  Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites , 2019, Composites Part A: Applied Science and Manufacturing.

[8]  Akira Todoroki,et al.  Effects of Set Curvature and Fiber Bundle Size on the Printed Radius of Curvature by a Continuous Carbon Fiber Composite 3D Printer , 2018, Additive Manufacturing.

[9]  J. M. Chacón,et al.  Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling , 2018, Composites Part B: Engineering.

[10]  M. Longana,et al.  An investigation into 3D printing of fibre reinforced thermoplastic composites , 2018, Additive Manufacturing.

[11]  J. M. Chacón,et al.  Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling , 2018, Polymer Testing.

[12]  B. Tijs,et al.  Modelling and simulation methodology for unidirectional composite laminates in a Virtual Test Lab framework , 2018 .

[13]  F. París,et al.  Characterization of 3D printed long fibre reinforced composites , 2018 .

[14]  N. Rudolph,et al.  Fiber Orientation Effects in Fused Filament Fabrication of Air-Cooled Heat Exchangers , 2018 .

[15]  K. McDonnell,et al.  Fabrication of Continuous Carbon, Glass and Kevlar fibre reinforced polymer composites using Additive Manufacturing , 2017 .

[16]  Dichen Li,et al.  3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance , 2017 .

[17]  C. S. Lopes,et al.  Multiscale virtual testing: the roadmap to efficient design of composites for damage resistance and tolerance , 2016 .

[18]  A. Todoroki,et al.  3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens , 2016 .

[19]  Pedro P. Camanho,et al.  Numerical modelling of failure in advanced composite materials , 2015 .

[20]  E. V. González,et al.  Damage resistance and damage tolerance of dispersed CFRP laminates: Effect of ply clustering , 2013 .

[21]  E. V. González,et al.  Damage resistance and damage tolerance of dispersed CFRP laminates: Effect of the mismatch angle between plies , 2013 .

[22]  Lukas Helfen,et al.  A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage , 2013 .

[23]  E. V. González,et al.  Damage resistance and damage tolerance of dispersed CFRP laminates: Design and optimization , 2013 .

[24]  Zafer Gürdal,et al.  Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations , 2009 .

[25]  Zafer Gürdal,et al.  LOW-VELOCITY IMPACT DAMAGE ON DISPERSED STACKING SEQUENCE LAMINATES. PART I: EXPERIMENTS , 2009 .

[26]  Zafer Gürdal,et al.  Stacking Sequence Dispersion and Tow-Placement for Improved Damage Tolerance , 2008 .

[27]  M. Jirásek,et al.  ROTATING CRACK MODEL WITH TRANSITION TO SCALAR DAMAGE , 1998 .

[28]  Paul Straznicky,et al.  Effects of stacking sequence on the impact resistance in composite laminates. Part 2: prediction method , 1998 .

[29]  Paul Straznicky,et al.  Effects of stacking sequence on the impact resistance in composite laminates — Part 1: parametric study , 1998 .

[30]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[31]  John Morton,et al.  The impact resistance of composite materials — a review , 1991 .

[32]  G. Clark,et al.  Modelling of impact damage in composite laminates , 1989 .

[33]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[34]  Z. Hashin Failure Criteria for Unidirectional Fiber Composites , 1980 .