Symbolic multibody methods for real-time simulation of railway vehicles

In this work, recently developed state-of-the-art symbolic multibody methods are tested to accurately model a complex railway vehicle. The model is generated using a symbolic implementation of the principle of virtual power. Creep forces are modeled using a direct symbolic implementation of the standard linear Kalker model. No simplifications, such as base parameter reduction, partial-linearization or lookup tables for contact kinematics, are used. An Implicit–Explicit integration scheme is proposed to efficiently deal with the stiff creep dynamics. Real-time performance is achieved: the CPU time required for a very robust 1ms$1~\text{ms}$ integration time step is 203 μs.

[1]  E. Vollebregt,et al.  Numerical modeling of measured railway creep versus creep-force curves with CONTACT , 2014 .

[2]  Vicente Mata,et al.  3D inertia transfer concept and symbolic determination of the base inertial parameters , 2012 .

[3]  Jean-Claude Samin,et al.  Symbolic Modeling of Multibody Systems , 2003 .

[4]  J. J. Kalker,et al.  The tangential force transmitted by two elastic bodies rolling over each other with pure creepage , 1968 .

[5]  Simon Iwnicki,et al.  Handbook of railway vehicle dynamics , 2006 .

[6]  Vicente Mata,et al.  Multibody model reduction by parameter elimination , 2014 .

[7]  Vicente Mata,et al.  Simplification of multibody models by parameter reduction , 2017, ArXiv.

[8]  Yoshihiro Suda,et al.  Wheel/rail contact geometry on tight radius curved track: simulation and experimental validation , 2011 .

[9]  Monica Malvezzi,et al.  Determination of wheel–rail contact points with semianalytic methods , 2008 .

[10]  Monica Malvezzi,et al.  Dynamic simulation of railway vehicles: wheel/rail contact analysis , 2009 .

[11]  J. K. Hedrick,et al.  A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis , 1983 .

[12]  Joao Pombo,et al.  A new wheel–rail contact model for railway dynamics , 2007 .

[13]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[14]  José L. Escalona,et al.  Modeling Wheel-Rail Contact With Pre-Calculated Lookup Tables in Arbitrary-Geometry Tracks With Irregularities , 2015 .

[15]  Martin Arnold,et al.  Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs , 2007 .

[16]  J. Kalker,et al.  On the rolling contact of two elastic bodies in the presence of dry friction , 1967 .

[17]  Javier Ros,et al.  Symbolic multibody modeling based on recursive multibody operators and expression atomization , 2015 .

[18]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[19]  Javier Ros,et al.  Inertia transfer concept based general method for the determination of the base inertial parameters , 2015 .

[20]  J. J. Kalker,et al.  A Fast Algorithm for the Simplified Theory of Rolling Contact , 1982 .

[21]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[22]  M Bozzone,et al.  A lookup table-based method for wheel–rail contact analysis , 2011 .

[23]  P. Wilders,et al.  FASTSIM2: a second-order accurate frictional rolling contact algorithm , 2011 .

[24]  E. J. Haug,et al.  Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods , 1989 .

[25]  Scott R. Fulton,et al.  Semi-Implicit Time Differencing , 2004 .

[26]  Xabier Iriarte,et al.  LIB3D MEC-GINAC, A LIBRARY FOR SYMBOLIC MULTIBODY DYNAMICS , 2007 .

[27]  M. Arnold,et al.  Simulation Algorithms in Vehicle System Dynamics , 2004 .

[28]  J. C. Samin,et al.  A Multibody Loop Constraints Approach for Modelling Cam/Follower Devices , 2000 .

[29]  Jean-Claude Samin,et al.  FULLY SYMBOLIC GENERATION OF COMPLEX MULTIBODY MODELS* , 2002 .

[30]  Jorge Ambrósio,et al.  General Spatial Curve Joint for Rail Guided Vehicles: Kinematics and Dynamics , 2003 .

[31]  Scott R. Fulton,et al.  Semi-Implicit Time Dierencing , 2004 .

[32]  Ahmed A. Shabana,et al.  An Augmented Formulation for Mechanical Systems with Non-Generalized Coordinates: Application to Rigid Body Contact Problems , 2001 .

[33]  Ahmed A. Shabana,et al.  Development of elastic force model for wheel/rail contact problems , 2004 .

[34]  Hiroyuki Sugiyama,et al.  On the Computer Formulations of the Wheel/Rail Contact Problem , 2005 .