Velocity and Mobility Investigation in 1-nm-EOT HfSiON on Si (110) and (100)—Does the Dielectric Quality Matter?

One of the fundamental questions for gate-stack scaling is whether the low-field mobility measured in long-channel devices is a good proxy for short-channel performance at high field. In this paper, we thoroughly investigate low- and high-field transports (velocity and mobility) in 1-nm-EOT high-kappa materials on Si (100) and (110) down to cryogenic temperature. It is shown that scattering in Si substrate dominates the transport at high field, thus enabling relaxation of the low-field-mobility requirement for future scaling below 1-nm EOT.

[1]  F. M. Bufler,et al.  Monte Carlo Simulation of the Performance Dependence on Surface and Channel Orientation in Scaled pFinFETs , 2006, 2006 European Solid-State Device Research Conference.

[2]  H.I. Smith,et al.  Electron velocity overshoot at room and liquid nitrogen temperatures in silicon inversion layers , 1988, IEEE Electron Device Letters.

[3]  C. Jacoboni,et al.  Electron drift velocity in silicon , 1975 .

[4]  K. Uchida,et al.  Comprehensive Study on Injection Velocity Enhancement in Dopant-Segregated Schottky MOSFETs , 2006, 2006 International Electron Devices Meeting.

[5]  M. Caymax,et al.  Mobility Reduction due to Remote Charge Scattering in Al2O3/SiO2 Gate-Stacked MISFETs , 2002 .

[6]  D. Kern,et al.  High transconductance and velocity overshoot in NMOS devices at the 0.1- mu m gate-length level , 1988, IEEE Electron Device Letters.

[7]  R. Loo,et al.  Record ION/IOFF performance for 65nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability , 2008, 2008 IEEE International Electron Devices Meeting.

[8]  M. Heyns,et al.  A detailed study on the growth of thin oxide layers on silicon using ozonated solutions , 2000 .

[9]  G. Curatola,et al.  Detailed modeling of sub-100-nm MOSFETs based on Schro/spl uml/dinger DD per subband and experiments and evaluation of the performance gap to ballistic transport , 2005, IEEE Transactions on Electron Devices.

[10]  H. Tsuchiya,et al.  Influence of Elastic and Inelastic Phonon Scattering on the Drive Current of Quasi-Ballistic MOSFETs , 2008, IEEE Transactions on Electron Devices.

[11]  C. Canali,et al.  Hole drift velocity in silicon , 1975 .

[12]  K. Uchida,et al.  Universal Relationship between Low-Field Mobility and High-Field Carrier Velocity in High-K and SiO2 Gate Dielectric MOSFETs , 2006, 2006 International Electron Devices Meeting.

[13]  J. F. Gibbons,et al.  Measurement of high-field carrier drift velocities in silicon by a time-of-flight technique , 1967 .

[14]  A. Chou,et al.  Hybrid-orientation technology (HOT): opportunities and challenges , 2006, IEEE Transactions on Electron Devices.

[15]  Supriyo Datta,et al.  The silicon MOSFET from a transmission viewpoint , 1998 .

[16]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[17]  W. Spitzer,et al.  Determination of Optical Constants and Carrier Effective Mass of Semiconductors , 1957 .

[18]  D. Antoniadis,et al.  On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit? , 2001, IEEE Electron Device Letters.

[19]  Luigi Pantisano,et al.  Reduction of the anomalous VT behavior in MOSFETs with high-κ/metal gate stacks , 2007 .

[20]  P. Solomon,et al.  Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness , 2003 .

[21]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[22]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[23]  Temperature Dependence of Electron Mobility in Si Inversion Layers , 1991 .

[24]  G. Groeseneken,et al.  Mobility and Dielectric Quality of 1-nm EOT HfSiON on Si(110) and (100) , 2008, IEEE Transactions on Electron Devices.

[25]  S. De Gendt,et al.  RF Split Capacitance–Voltage Measurements of Short-Channel and Leaky MOSFET Devices , 2006, IEEE Electron Device Letters.

[26]  Ryuji Ohba,et al.  Nonstationary electron/hole transport in sub-0.1 /spl mu/m MOS devices: correlation with mobility and low-power CMOS application , 2001 .

[27]  Fundamentals and extraction of velocity saturation in sub-100nm (110)-Si and (100)-Ge , 2008, 2008 Symposium on VLSI Technology.

[28]  Mark S. Lundstrom,et al.  On the performance limits for Si MOSFETs: a theoretical study , 2000 .

[29]  W. Shockley,et al.  Mobilities of Electrons in High Electric Fields , 1951 .

[30]  D. Colman,et al.  Mobility Anisotropy and Piezoresistance in Silicon p‐Type Inversion Layers , 1968 .

[31]  S. De Gendt,et al.  The impact of sub monolayers of HfO/sub 2/ on the device performance of high-k based transistors [MOSFETs] , 2003, IEEE International Electron Devices Meeting 2003.

[32]  S. Severi,et al.  A Reliable Metric for Mobility Extraction of Short-Channel MOSFETs , 2007, IEEE Transactions on Electron Devices.

[33]  E. Gusev,et al.  The role of Si orientation and temperature on the carrier mobility in metal oxide semiconductor field-effect transistors with ultrathin HfO2 gate dielectrics , 2006 .

[34]  P. H. Ladbrooke,et al.  The physics of excess electron velocity in submicron‐channel FET’s , 1977 .

[35]  D. Schumann,et al.  Vertical N-channel MOSFETs for extremely high density memories: the impact of interface orientation on device performance , 2001 .

[36]  S. Narasimha,et al.  (110) channel, SiON gate-dielectric PMOS with record high Ion=1 mA/μm through channel stress and source drain external resistance (Rext) engineering , 2007, 2007 IEEE International Electron Devices Meeting.

[37]  Luigi Pantisano,et al.  The impact of sub monolayers of HfO2 on the device performance of high-K based transistors , 2003 .

[38]  K. Natori,et al.  Ballistic MOSFET reproduces current-voltage characteristics of an experimental device , 2002, IEEE Electron Device Letters.