Where’s everybody? Comparing the use of heatmaps to uncover cities’ tacit social context in smartphones and pervasive displays

We introduce HotCity, a city-wide social context crowdsourcing platform that utilises user’s current location and geo-tagged social data (e.g., check-ins, “likes” and ratings) to autonomously obtain insight on a city’s tacit social awareness (e.g., “when is best time and where to go out on a Saturday night?”). HotCity is available as a mobile application for Android and as an interactive application on pervasive large displays, showcasing a heatmap of social buzz. We present the results of an in-the-field evaluation with 30 volunteers, of which 27 are tourists of the mobile app, compare it to a previous evaluation of the pervasive display app and also present usage data of free use of the pervasive display app over 3 years in the city of Oulu, Finland. Our data demonstrate that HotCity can communicate effectively the city’s current social buzz, without affecting digital maps’ cartography information. Our empirical analysis highlights a change in tourists’ foci when exploring the city using HotCity. We identify a transition from “individual [places]” to “good [areas]” and “people [choices]”. Our contributions are threefold: a long-term deployment of a city-wide social context crowdsourcing platform; an in-the-field evaluation of HotCity on mobile devices and pervasive displays; and an evaluation of cities’ tacit knowledge as social context as a denominator in city planning and for the development of future mobile social-aware applications.

[1]  Gregory M. P. O'Hare,et al.  Gulliver's Genie: a multi-agent system for ubiquitous and intelligent content delivery , 2003, Comput. Commun..

[2]  Dirk Van Oudheusden,et al.  A PERSONALIZED TOURIST TRIP DESIGN ALGORITHM FOR MOBILE TOURIST GUIDES , 2008, Appl. Artif. Intell..

[3]  Joseph F. McCarthy,et al.  UniCast, OutCast & GroupCast: Three Steps Toward Ubiquitous, Peripheral Displays , 2001, UbiComp.

[4]  Michael Roberts,et al.  Activity-based serendipitous recommendations with the Magitti mobile leisure guide , 2008, CHI.

[5]  Jon M. Kleinberg,et al.  Mapping the world's photos , 2009, WWW '09.

[6]  John Zimmerman,et al.  I'm the mayor of my house: examining why people use foursquare - a social-driven location sharing application , 2011, CHI.

[7]  B. Pröll,et al.  Context-awareness in Mobile Tourism Guides – A Comprehensive Survey , 2005 .

[8]  Michael Koch,et al.  Information radiators: using large screens and small devices to support awareness in urban space , 2017, WI.

[9]  M. Sheelagh T. Carpendale,et al.  Interactive Public Displays , 2013, IEEE Computer Graphics and Applications.

[10]  Denzil Ferreira,et al.  HotCity: enhancing ubiquitous maps with social context heatmaps , 2013, MUM.

[11]  Francesco Ricci,et al.  Techniques for cold-starting context-aware mobile recommender systems for tourism , 2014, Intelligenza Artificiale.

[12]  Tobias Höllerer,et al.  I’m feeling LoCo: A Location Based Context Aware Recommendation System , 2012 .

[13]  Timo Ojala,et al.  Towards multi-application public interactive displays , 2012, PerDis.

[14]  R. Malaka,et al.  CRUMPET: creation of user-friendly mobile services personalised for tourism , 2001 .

[15]  Carlo Ratti,et al.  Place Enrichment by Mining the Web , 2009, AmI.

[16]  Elizabeth F. Churchill,et al.  The Plasma Poster Network: Posting Multimedia Content in Public Places , 2003, INTERACT.

[17]  Xiaohui Liu,et al.  Editorial: Data mining for understanding user needs , 2010, TCHI.

[18]  Andreas Komninos,et al.  Capturing Urban Dynamics with Scarce Check-In Data , 2013, IEEE Pervasive Computing.

[19]  Abdulmotaleb El-Saddik,et al.  E-Tourism: Mobile Dynamic Trip Planner , 2016, 2016 IEEE International Symposium on Multimedia (ISM).

[20]  Steve Howard,et al.  Evaluating the usability of a mobile guide: The influence of location, participants and resources , 2005, Behav. Inf. Technol..

[21]  J. Valls,et al.  Attractiveness Analysis of European Tourist Cities , 2014 .

[22]  Carlo Ratti,et al.  Eigenplaces: Segmenting Space through Digital Signatures , 2010, IEEE Pervasive Computing.

[23]  Vassilis Kostakos,et al.  Brief encounter networks , 2007, ArXiv.

[24]  Daqing Zhang,et al.  Fine-grained preference-aware location search leveraging crowdsourced digital footprints from LBSNs , 2013, UbiComp.

[25]  Vassilis Kostakos,et al.  Brief encounters: Sensing, modeling and visualizing urban mobility and copresence networks , 2010, TCHI.

[26]  Danyel Fisher,et al.  Hotmap: Looking at Geographic Attention , 2007, IEEE Transactions on Visualization and Computer Graphics.

[27]  Bin Jiang,et al.  Characterising Human Mobility Patterns over a Large Street Network , 2008 .

[28]  Daniele Quercia,et al.  Mobile Phones and Outdoor Advertising: Measurable Advertising , 2011, IEEE Pervasive Computing.

[29]  Kevin Curran,et al.  Context-aware intelligent recommendation system for tourism , 2013, 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[30]  Liang Liu,et al.  Estimating Origin-Destination Flows Using Mobile Phone Location Data , 2011, IEEE Pervasive Computing.

[31]  Keith Cheverst,et al.  Developing a context-aware electronic tourist guide: some issues and experiences , 2000, CHI.

[32]  Ling Chen,et al.  A context-aware personalized travel recommendation system based on geotagged social media data mining , 2013, Int. J. Geogr. Inf. Sci..

[33]  Francesco Ricci,et al.  Selective contextual information acquisition in travel recommender systems , 2017, Information Technology & Tourism.

[34]  Dieter Schmalstieg,et al.  The utility of Magic Lens interfaces on handheld devices for touristic map navigation , 2015, Pervasive Mob. Comput..

[35]  Jennifer Marlow,et al.  No app needed: enabling mobile phone communication with a tourist kiosk using cameras and screens , 2017, UbiComp/ISWC Adjunct.

[36]  Ago Luberg,et al.  Sightsmap: Crowd-Sourced Popularity of the World Places , 2013, ENTER.

[37]  Cecilia Mascolo,et al.  A Tale of Many Cities: Universal Patterns in Human Urban Mobility , 2011, PloS one.

[38]  Daniel Herzog,et al.  Recommending a Sequence of Points of Interest to a Group of Users in a Mobile Context , 2017, RecSys.

[39]  Nuno Leite,et al.  GuideMe – A Tourist Guide with a Recommender System and Social Interaction , 2014 .

[40]  Sanjay Misra,et al.  Towards a social and context-aware mobile recommendation system for tourism , 2017, Pervasive Mob. Comput..

[41]  Josep Blat,et al.  Digital Footprinting: Uncovering Tourists with User-Generated Content , 2008, IEEE Pervasive Computing.

[42]  Mor Naaman,et al.  Towards automatic extraction of event and place semantics from flickr tags , 2007, SIGIR.

[43]  Minkyong Kim,et al.  Modeling users' mobility among WiFi access points , 2005, WiTMeMo '05.

[44]  Marcos Serrano,et al.  Exploring smartphone-based interaction with overview+detail interfaces on 3D public displays , 2014, MobileHCI '14.

[45]  Mohamed F. Mokbel,et al.  Location-based and preference-aware recommendation using sparse geo-social networking data , 2012, SIGSPATIAL/GIS.

[46]  Johan Koolwaaij,et al.  Context-Aware Recommendations in the Mobile Tourist Application COMPASS , 2004, AH.