Quantum plexcitonics: strongly interacting plasmons and excitons.

We present a fully quantum mechanical approach to describe the coupling between plasmons and excitonic systems such as molecules or quantum dots. The formalism relies on Zubarev's Green functions, which allow us to go beyond the perturbative regime within the internal evolution of a plasmonic nanostructure and to fully account for quantum aspects of the optical response and Fano resonances in plasmon-excition (plexcitonic) systems. We illustrate this method with two examples consisting of an exciton-supporting quantum emitter placed either in the vicinity of a single metal nanoparticle or in the gap of a nanoparticle dimer. The optical absorption of the combined emitter-dimer structure is shown to undergo dramatic changes when the emitter excitation level is tuned across the gap-plasmon resonance. Our work opens a new avenue to deal with strongly interacting plasmon-excition hybrid systems.

[1]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[2]  Andreas Stintz,et al.  Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes , 2000 .

[3]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[4]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[5]  Nordlander,et al.  Many-body theory for charge transfer in atom-surface collisions. , 1994, Physical review. B, Condensed matter.

[6]  Matthew Pelton,et al.  Quantum-dot-induced transparency in a nanoscale plasmonic resonator. , 2010, Optics express.

[7]  M Paternostro,et al.  Single-photon excitation of surface plasmon polaritons. , 2008, Physical review letters.

[8]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[9]  Nicolas Gisin,et al.  Quantum superposition and entanglement of mesoscopic plasmons , 2005, quant-ph/0512022.

[10]  L. Liz‐Marzán,et al.  Light concentration at the nanometer scale , 2010 .

[11]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[12]  D. Zubarev DOUBLE-TIME GREEN FUNCTIONS IN STATISTICAL PHYSICS , 1960 .

[13]  Norris,et al.  Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. , 1996, Physical review letters.

[14]  M. Tsukada,et al.  Theory of optical excitation of adsorbed rare gas atoms , 1985 .

[15]  S. Swain,et al.  A general approach to nonequilibrium quantum statistics , 1971 .

[16]  A. Badolato,et al.  The nonlinear Fano effect , 2008, Nature.

[17]  F. G. D. Abajo,et al.  MULTIPLE SCATTERING OF RADIATION IN CLUSTERS OF DIELECTRICS , 1999 .

[18]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[19]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[20]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[21]  Changfeng Wu,et al.  Multicolor conjugated polymer dots for biological fluorescence imaging. , 2008, ACS nano.

[22]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[23]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .

[24]  R. Saija,et al.  Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. , 2010, Physical review letters.

[25]  A. Stintz,et al.  Optical absorption cross section of quantum dots , 2004 .

[26]  A. Messiah Quantum Mechanics , 1961 .

[27]  G. Bryant,et al.  Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability. , 2008, Nano letters.

[28]  Garnett W. Bryant,et al.  Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects , 2010 .

[29]  Luis M. Liz-Marzán,et al.  Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method , 2008 .