Informed Bandwidth Adaptation in Wi-Fi Networks using Ping-Pair

Bandwidth adaptation for real-time streaming applications is typically designed to be conservative, since pushing for higher bandwidth could be counterproductive if it means an increased latency. However, such bandwidth adaptation operates based on the "symptoms" of congestion (e.g., increased delay) without knowing the underlying cause (self-congestion vs. cross-traffic). In this paper, we consider this problem in the context of Wi-Fi networks and introduce a novel technique, Ping-Pair, to measure and attribute congestion. We have integrated Ping-Pair into the popular Skype audio-video conferencing application to enable improved bandwidth adaptation dubbed Kwikr, using which we have conducted controlled experiments and also randomized A/B tests in a production setting.

[1]  Mark Handley,et al.  RFC 5348: TCP Friendly Rate Control (TFRC): Protocol Specification , 2008 .

[2]  Henning Schulzrinne,et al.  WiSlow: A Wi-Fi network performance troubleshooting tool for end users , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[3]  Nick Feamster,et al.  WTF? Locating Performance Problems in Home Networks , 2013 .

[4]  Vipul Gupta,et al.  Freeze-TCP: a true end-to-end TCP enhancement mechanism for mobile environments , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[5]  Mo Dong,et al.  PCC: Re-architecting Congestion Control for Consistent High Performance , 2014, NSDI.

[6]  Sally Floyd,et al.  TCP and explicit congestion notification , 1994, CCRV.

[7]  Mark Handley,et al.  Congestion control for high bandwidth-delay product networks , 2002, SIGCOMM '02.

[8]  Albert G. Greenberg,et al.  Data center TCP (DCTCP) , 2010, SIGCOMM '10.

[9]  Thomas E. Anderson,et al.  PCP: Efficient Endpoint Congestion Control , 2006, NSDI.

[10]  Calvin C. Newport Improving Wireless Network Performance Using Sensor Hints , 2011, NSDI.

[11]  Hari Balakrishnan,et al.  Stochastic Forecasts Achieve High Throughput and Low Delay over Cellular Networks , 2013, NSDI.

[12]  Vishnu Navda,et al.  DiversiFi: robust multi-link interactive streaming , 2015, CoNEXT.

[13]  Van Jacobson,et al.  Congestion avoidance and control , 1988, SIGCOMM '88.

[14]  Andreas Terzis,et al.  CQIC: Revisiting Cross-Layer Congestion Control for Cellular Networks , 2015, HotMobile.

[15]  QUTdN QeO,et al.  Random early detection gateways for congestion avoidance , 1993, TNET.

[16]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[17]  Yang Xu,et al.  Profiling Skype video calls: Rate control and video quality , 2012, 2012 Proceedings IEEE INFOCOM.

[18]  Michalis Faloutsos,et al.  Assessing link quality in IEEE 802.11 Wireless Networks: Which is the right metric? , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[19]  Luca De Cicco,et al.  Understanding the Dynamic Behaviour of the Google Congestion Control for RTCWeb , 2013, 2013 20th International Packet Video Workshop.

[20]  Ramón Cáceres,et al.  Fast and scalable handoffs for wireless internetworks , 1996, MobiCom '96.

[21]  Seth Gilbert,et al.  QProbe: locating the bottleneck in cellular communication , 2015, CoNEXT.

[22]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[23]  B. R. Badrinath,et al.  I-TCP: indirect TCP for mobile hosts , 1995, Proceedings of 15th International Conference on Distributed Computing Systems.

[24]  Toke Høiland-Jørgensen,et al.  Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi , 2017, USENIX Annual Technical Conference.

[25]  Larry L. Peterson,et al.  TCP Vegas: new techniques for congestion detection and avoidance , 1994 .

[26]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[27]  Jörg Widmer,et al.  TCP Friendly Rate Control (TFRC): Protocol Specification , 2008, RFC.

[28]  Janardhan R. Iyengar,et al.  Low Extra Delay Background Transport (LEDBAT) , 2012, RFC.

[29]  Ingemar Johansson Self-clocked rate adaptation for conversational video in LTE , 2014, CSWS@SIGCOMM.

[30]  K. K. Ramakrishnan,et al.  A binary feedback scheme for congestion avoidance in computer networks with a connectionless network layer , 1988, SIGCOMM '88.

[31]  Jitendra Padhye,et al.  Bandwidth estimation in broadband access networks , 2004, IMC '04.

[32]  Srinivasan Seshan,et al.  Can user-level probing detect and diagnose common home-WLAN pathologies , 2012, CCRV.

[33]  Pamela C. Cosman,et al.  End-to-end differentiation of congestion and wireless losses , 2003, TNET.

[34]  Raj Jain,et al.  Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks , 1989, Comput. Networks.

[35]  Srinivasan Seshan,et al.  Improving TCP/IP performance over wireless networks , 1995, MobiCom '95.

[36]  Jon Postel,et al.  Internet Control Message Protocol , 1981, RFC.

[37]  Jia Wang,et al.  Locating internet bottlenecks: algorithms, measurements, and implications , 2004, SIGCOMM '04.

[38]  Luca De Cicco,et al.  A Google Congestion Control Algorithm for Real-Time Communication , 2012 .

[39]  Soung Chang Liew,et al.  TCP Veno: TCP enhancement for transmission over wireless access networks , 2003, IEEE J. Sel. Areas Commun..