BRAFV600E detection in melanoma is highly improved by COLD-PCR.

[1]  K. Flaherty,et al.  Phase I study of PLX4032: Proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  R. Kefford,et al.  Targeting BRAF for patients with melanoma , 2010, British Journal of Cancer.

[3]  D. Allingham-Hawkins,et al.  BRAF p.Val600Glu (V600E) Testing for Assessment of Treatment Options in Metastatic Colorectal Cancer , 2010, PLoS currents.

[4]  C. Wellbrock,et al.  BRAF as therapeutic target in melanoma. , 2010, Biochemical pharmacology.

[5]  F. Hodi,et al.  Advances in targeted therapy for melanoma. , 2010, Clinical advances in hematology & oncology : H&O.

[6]  F. Cianchi,et al.  The use of COLD-PCR and high-resolution melting analysis improves the limit of detection of KRAS and BRAF mutations in colorectal cancer. , 2010, The Journal of molecular diagnostics : JMD.

[7]  Michael Krauthammer,et al.  PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells , 2010, Pigment cell & melanoma research.

[8]  Yuri E Nikiforov,et al.  Molecular diagnostics and predictors in thyroid cancer. , 2009, Thyroid : official journal of the American Thyroid Association.

[9]  Cheng Li,et al.  Two‐round coamplification at lower denaturation temperature–PCR (COLD‐PCR)‐based sanger sequencing identifies a novel spectrum of low‐level mutations in lung adenocarcinoma , 2009, Human mutation.

[10]  H. Koeppen,et al.  Application of COLD-PCR for improved detection of KRAS mutations in clinical samples , 2009, Modern Pathology.

[11]  F. Cianchi,et al.  High-resolution melting analysis for rapid detection of KRAS, BRAF, and PIK3CA gene mutations in colorectal cancer. , 2008, American journal of clinical pathology.

[12]  R. Berbeco,et al.  Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing , 2008, Nature Medicine.

[13]  P. Gimotty,et al.  Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. , 2007, The Journal of molecular diagnostics : JMD.

[14]  S. O’Day,et al.  Utility of Circulating B-RAF DNA Mutation in Serum for Monitoring Melanoma Patients Receiving Biochemotherapy , 2007, Clinical Cancer Research.

[15]  M. Trivett,et al.  Distinct clinical and pathological features are associated with the BRAF(T1799A(V600E)) mutation in primary melanoma. , 2007, The Journal of investigative dermatology.

[16]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[17]  P. Khavari,et al.  Melanoma genetics and the development of rational therapeutics. , 2005, The Journal of clinical investigation.

[18]  D. Polsky,et al.  Clinical significance of BRAF mutations in metastatic melanoma , 2004, Journal of Translational Medicine.

[19]  C. Marshall,et al.  B-RAF is a therapeutic target in melanoma , 2004, Oncogene.

[20]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[21]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[22]  U. Lehmann,et al.  Detection of gene amplification in archival breast cancer specimens by laser-assisted microdissection and quantitative real-time polymerase chain reaction. , 2000, The American journal of pathology.