Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy.

We propose an efficient construction of the hierarchical equations of motion formalism of quantum dissipation on the basis of the Padé spectrum decomposition of the Bose function and the multiple brownian oscillators decomposition of the environment spectral density. The related hierarchical Liouville space algebra for quantum dissipative mechanics is outlined in relation to the evaluation of nonlinear optical response functions. With the simulated transient pump-probe spectroscopy of model exciton systems, we demonstrate the correlated system-environment coherence by the present nonperturbative and non-markovian quantum dissipation theory.

[1]  Qiang Shi,et al.  Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers. , 2010, The Journal of chemical physics.

[2]  Yijing Yan,et al.  Dynamic Coulomb blockade in single-lead quantum dots , 2008, 0807.4282.

[3]  Yijing Yan,et al.  Dynamic electronic response of a quantum dot driven by time-dependent voltage. , 2008, The Journal of chemical physics.

[4]  Yijing Yan,et al.  Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. , 2007, The Journal of chemical physics.

[5]  Qiang Shi,et al.  Electron transfer dynamics: Zusman equation versus exact theory. , 2009, The Journal of chemical physics.

[6]  Yijing Yan,et al.  Dynamical semigroup Fokker–Planck equation approach to transient absorption and fluorescence upconversion spectroscopies , 2001 .

[7]  R. Xu,et al.  Exact dynamics of driven Brownian oscillators. , 2009, Journal of Chemical Physics.

[8]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[9]  William H Miller,et al.  Including quantum effects in the dynamics of complex (i.e., large) molecular systems. , 2006, The Journal of chemical physics.

[10]  R. Kubo,et al.  Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath , 1989 .

[11]  P. Cui,et al.  Correlation and response functions with non-Markovian dissipation: a reduced Liouville-space theory. , 2005, The Journal of chemical physics.

[12]  R. Feynman,et al.  The Theory of a general quantum system interacting with a linear dissipative system , 1963 .

[13]  A. Ishizaki,et al.  Modeling vibrational dephasing and energy relaxation of intramolecular anharmonic modes for multidimensional infrared spectroscopies. , 2006, The Journal of chemical physics.

[14]  Akihito Ishizaki,et al.  Dynamics of a multimode system coupled to multiple heat baths probed by two-dimensional infrared spectroscopy. , 2007, The journal of physical chemistry. A.

[15]  F. Witte,et al.  Book Review: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets. Prof. Dr. Hagen Kleinert, 3rd extended edition, World Scientific Publishing, Singapore , 2003 .

[16]  N. Makri Forward-Backward Quantum Dynamics for Time Correlation Functions , 2004 .

[17]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[18]  Haobin Wang,et al.  Generalized forward–backward initial value representation for the calculation of correlation functions in complex systems , 2001 .

[19]  Jie Hu,et al.  Communication: Padé spectrum decomposition of Fermi function and Bose function. , 2010, The Journal of chemical physics.

[20]  Shaul Mukamel,et al.  Photon echoes of polyatomic molecules in condensed phases , 1991 .

[21]  E. Pollak,et al.  Forward-backward semiclassical initial value series representation of quantum correlation functions. , 2006, The Journal of chemical physics.

[22]  S. Mukamel,et al.  Femtosecond pump-probe spectroscopy of polyatomic molecules in condensed phases. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[23]  YiJing Yan,et al.  Quantum mechanics of dissipative systems. , 2005, Annual review of physical chemistry.

[24]  Y. Tanimura Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation Approaches to Quantum Dissipative Systems , 2006 .

[25]  Darius Abramavicius,et al.  Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. , 2009, Chemical reviews.

[26]  Ping Cui,et al.  Exact quantum master equation via the calculus on path integrals. , 2005, The Journal of chemical physics.

[27]  Shaul Mukamel,et al.  Coherent multidimensional optical spectroscopy. , 2009, Accounts of chemical research.

[28]  S. Mukamel,et al.  Electronic dephasing, vibrational relaxation, and solvent friction in molecular nonlinear optical line shapes , 1988 .

[29]  Yijing Yan,et al.  Dynamics of quantum dissipation systems interacting with bosonic canonical bath: hierarchical equations of motion approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Jiushu Shao,et al.  Decoupling quantum dissipation interaction via stochastic fields. , 2004, The Journal of chemical physics.

[31]  Qiang Shi,et al.  Efficient hierarchical Liouville space propagator to quantum dissipative dynamics. , 2009, The Journal of chemical physics.

[32]  Yijing Yan,et al.  Numerical approach to time-dependent quantum transport and dynamical Kondo transition. , 2009, The Journal of chemical physics.

[33]  Yun-An Yan,et al.  Hierarchical approach based on stochastic decoupling to dissipative systems , 2004 .

[34]  H. Kleinert Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .

[35]  R. Xu,et al.  Biexponential theory of Drude dissipation via hierarchical quantum master equation. , 2010, The Journal of chemical physics.

[36]  Qiang Shi,et al.  Hierarchical quantum master equation with semiclassical Drude dissipation. , 2009, The Journal of chemical physics.

[37]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[38]  Y. Tanimura,et al.  Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[39]  A. Ishizaki,et al.  Quantum Dynamics of System Strongly Coupled to Low-Temperature Colored Noise Bath: Reduced Hierarchy Equations Approach , 2005 .