Inferring linear and nonlinear Interaction networks using neighborhood support vector machines

In this paper, we consider modelling interaction between a set of variables in the context of time series and high dimension. We suggest two approaches. The first is similar to the neighborhood lasso when the lasso model is replaced by a support vector machine (SVMs). The second is a restricted Bayesian network adapted for time series. We show the efficiency of our approaches by simulations using linear, nonlinear data set and a mixture of both.

[1]  A. Butte,et al.  Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Antonio Reverter,et al.  Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks , 2008, Bioinform..

[3]  Korbinian Strimmer,et al.  Learning Large‐Scale Graphical Gaussian Models from Genomic Data , 2005 .

[4]  Nanny Wermuth,et al.  Multivariate Dependencies: Models, Analysis and Interpretation , 1996 .

[5]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[7]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[8]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[9]  Anis Ben Ishak,et al.  Sélection de variables par les machines à vecteurs supports pour la discrimination binaire et multiclasse en grande dimension , 2007 .

[10]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[11]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[12]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[13]  Jessika Weiss,et al.  Graphical Models In Applied Multivariate Statistics , 2016 .

[14]  Korbinian Strimmer,et al.  An empirical Bayes approach to inferring large-scale gene association networks , 2005, Bioinform..

[15]  Kurt Hornik,et al.  Support Vector Machines in R , 2006 .

[16]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[17]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[18]  Sophie Lèbre,et al.  Statistical Applications in Genetics and Molecular Biology Inferring Dynamic Genetic Networks with Low Order Independencies Inferring Dynamic Genetic Networks with Low Order Independencies ∗ , 2009 .

[19]  Frank Emmert-Streib,et al.  Inferring the conservative causal core of gene regulatory networks , 2010, BMC Systems Biology.

[20]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[21]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[22]  Hwanjo Yu,et al.  SVM Tutorial - Classification, Regression and Ranking , 2012, Handbook of Natural Computing.

[23]  Alain Rakotomamonjy,et al.  Variable Selection Using SVM-based Criteria , 2003, J. Mach. Learn. Res..

[24]  Christophe Ambroise,et al.  Inferring sparse Gaussian graphical models with latent structure , 2008, 0810.3177.

[25]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[26]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[27]  G. McCormick Nonlinear Programming: Theory, Algorithms and Applications , 1983 .

[28]  João Ricardo Sato,et al.  Modeling Nonlinear Gene Regulatory Networks from Time Series Gene Expression Data , 2008, J. Bioinform. Comput. Biol..

[29]  W. Karush Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .

[30]  Chih-Jen Lin,et al.  Feature Ranking Using Linear SVM , 2008, WCCI Causation and Prediction Challenge.

[31]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[32]  Korbinian Strimmer,et al.  Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process , 2007, BMC Bioinformatics.

[33]  Kevin P. Murphy,et al.  Learning the Structure of Dynamic Probabilistic Networks , 1998, UAI.

[34]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .