Distributed control applications within sensor networks

Sensor networks are gaining a central role in the research community. This paper addresses some of the issues arising from the use of sensor networks in control applications. Classical control theory proves to be insufficient in modeling distributed control problems where issues of communication delay, jitter, and time synchronization between components are not negligible. After discussing our hardware and software platform and our target application, we review useful models of computation and then suggest a mixed model for design, analysis, and synthesis of control algorithms within sensor networks. We present a hierarchical model composed of continuous time-trigger components at the low level and discrete event-triggered components at the high level.

[1]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[2]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[3]  William B. Ackerman,et al.  Data Flow Languages , 1899, Computer.

[4]  Nicolas Halbwachs,et al.  LUSTRE: A declarative language for programming synchronous systems* , 1987 .

[5]  P. Le Guernic,et al.  Hybrid dynamical systems theory and the Signal language , 1990 .

[6]  Michael C. Caramanis,et al.  Near optimal manufacturing flow controller design , 1991 .

[7]  Pascal Raymond,et al.  The synchronous data flow programming language LUSTRE , 1991, Proc. IEEE.

[8]  Gérard Berry,et al.  The Esterel Synchronous Programming Language: Design, Semantics, Implementation , 1992, Sci. Comput. Program..

[9]  Andrea S. LaPaugh,et al.  Recontamination does not help to search a graph , 1993, JACM.

[10]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[11]  Thomas A. Henzinger,et al.  Modularity for Timed and Hybrid Systems , 1997, CONCUR.

[12]  Leonidas J. Guibas,et al.  Finding an unpredictable target in a workspace with obstacles , 1997, Proceedings of International Conference on Robotics and Automation.

[13]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[14]  Xiaotie Deng,et al.  How to learn an unknown environment. I: the rectilinear case , 1998, JACM.

[15]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[16]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.

[17]  Edward A. Lee Modeling concurrent real-time processes using discrete events , 1999, Ann. Softw. Eng..

[18]  John Lygeros,et al.  Computing Controllers for Nonlinear Hybrid Systems , 1999, HSCC.

[19]  J.P. Hespanha,et al.  Multiple-agent probabilistic pursuit-evasion games , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[20]  Vittaldas V. Prabhu,et al.  Nonlinear dynamics in distributed arrival time control of heterarchical manufacturing systems , 1999, IEEE Trans. Control. Syst. Technol..

[21]  Elizabeth M. Belding-Royer,et al.  A review of current routing protocols for ad hoc mobile wireless networks , 1999, IEEE Wirel. Commun..

[22]  John Lygeros,et al.  Controllers for reachability specifications for hybrid systems , 1999, Autom..

[23]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[24]  Ara N. Knaian,et al.  A Wireless Sensor Network for Smart Roadbeds and Intelligent Transportation Systems , 2000 .

[25]  Kristofer S. J. Pister,et al.  Smart Dust: Communicating with a Cubic-Millimeter Computer , 2001, Computer.

[26]  René Vidal,et al.  A hierarchical approach to probabilistic pursuit-evasion games with unmanned ground and aerial vehicles , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[27]  S. LaValle,et al.  Visibility-based pursuit-evasion: the case of curved environments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[28]  Albert Benveniste Some Synchronization Issues When Designing Embedded Systems from Components , 2001, EMSOFT.

[29]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[30]  Gerhard Fohler,et al.  Jitter compensation for real-time control systems , 2001, Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420).

[31]  Deborah Estrin,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Fine-grained Network Time Synchronization Using Reference Broadcasts , 2022 .

[32]  Leonidas J. Guibas,et al.  Sensing, tracking and reasoning with relations , 2002, IEEE Signal Process. Mag..

[33]  Steven V. Viscido,et al.  Self-Organized Fish Schools: An Examination of Emergent Properties , 2002, The Biological Bulletin.

[34]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[35]  J. Deneubourg,et al.  Dynamics of Aggregation and Emergence of Cooperation , 2002, The Biological Bulletin.

[36]  Feng Zhao,et al.  Information-driven dynamic sensor collaboration , 2002, IEEE Signal Process. Mag..

[37]  Anthony Stentz,et al.  Opportunistic optimization for market-based multirobot control , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[39]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.