Performance of the Wavelet Transform-Neural Network Based Receiver for DPIM in Diffuse Indoor Optical Wireless Links in Presence of Artificial Light Interference

Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both domains. Applying these signal processing tools for channel compensation and noise reduction can provide an enhanced performance compared to the traditional tools. In this paper, the slot error rate (SER) performance of digital pulse interval modulation (DPIM) in diffuse indoor optical wireless (OW) links subjected to the artificial light interference (ALI) is reported with new receiver structure based on the discrete WT (DWT) and ANN. Simulation results show that the DWT-ANN based receiver is very effective in reducing the effect of multipath induced inter-symbol interference (ISI) and ALI.

[1]  Nawras Mohamed Aldibbiat Optical wireless communication systems employing dual header pulse interval modulation (DH-PIM). , 2001 .

[2]  Joseph M. Kahn,et al.  Wireless Infrared Communications , 1994 .

[3]  Cipriano R. A. T. Lomba,et al.  Efficient simulation of the impulse response of the indoor wireless optical channel , 2000 .

[4]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[5]  A. R. Hayesb,et al.  Reducing the Effects of Intersymbol Interference in Diffuse DPIM Optical Wireless Communications , 2004 .

[6]  Jeffrey B. Carruthers,et al.  Wireless infrared communications , 2003, Proc. IEEE.

[7]  Matthew D. Higgins,et al.  Recent developments in indoor optical wireless [Optical wireless communications] , 2008, IET Commun..

[8]  Gareth Parry,et al.  Optical hotspots speed up wireless communication , 2007 .

[9]  Rui Valadas,et al.  Optical interference produced by artificial light , 1997, Wirel. Networks.

[10]  A. M. Street,et al.  Indoor optical wireless systems–a review , 1997 .

[11]  S. Arnon,et al.  Short-Range Optical Wireless Communications , 2005 .

[12]  Ting Wang,et al.  10Gb/s Free-Space Optical Transmission using OFDM , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[13]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979 .

[14]  Joseph M. Kahn,et al.  Experimental characterization of non-directed indoor infrared channels , 1995, IEEE Trans. Commun..

[15]  Tariq S. Durrani,et al.  A new adaptive functional-link neural-network-based DFE for overcoming co-channel interference , 1997, IEEE Trans. Commun..

[16]  Zabih Ghassemlooy Investigation of the baseline wander effect on indoor optical wireless system employing digital pulse interval modulation [optical wireless communications] , 2008, IET Commun..

[17]  R. Green,et al.  Recent Developments in Indoor Optical Wireless Systems , 2011 .

[18]  D. R. Wisely,et al.  A 1 Gbit/s optical wireless tracked architecture for ATM delivery , 1996 .

[19]  S. Haykin,et al.  Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem , 1998, Proc. IEEE.

[20]  Simon Haykin,et al.  Neural network-based receiver for wireless communications , 1999 .

[21]  Sevia Mahdaliza Idrus,et al.  Optical Wireless Communications: IR for Wireless Connectivity , 2008 .

[22]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[23]  John R. Barry Sequence detection and equalization for pulse-position modulation , 1994, Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications.

[24]  K. Smitha,et al.  Estimation of Channel Impulse Response Using Modified Ceiling Bounce Model in Non-Directed Indoor Optical Wireless Systems , 2008, Wirel. Pers. Commun..

[25]  Ravi Narasimhan,et al.  Effect of electronic-ballast fluorescent lighting on wireless infrared links , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[26]  Rui Valadas,et al.  Efficient simulation of the impulse response of the indoor wireless optical channel , 2000, Int. J. Commun. Syst..

[27]  Z. Ghassemlooy,et al.  A synopsis of modulation techniques for wireless infrared communication , 2007, 2007 ICTON Mediterranean Winter Conference.

[28]  Tet Hin Yeap,et al.  Decision feedback recurrent neural equalization with fast convergence rate , 2005, IEEE Transactions on Neural Networks.

[29]  Zabih Ghassemlooy,et al.  Indoor optical wireless systems employing dual header pulse interval modulation (DH‐PIM) , 2005, Int. J. Commun. Syst..

[30]  Andrew Robert Hayes,et al.  Digital pulse interval modulation for indoor optical wireless communication systems , 2002 .

[31]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[32]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[33]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979, Proceedings of the IEEE.

[34]  Izzat Darwazeh Analogue Optical Fibre Communications , 1995 .