The bacterial flagellar motor and its structural diversity.

The bacterial flagellum is a reversible rotary motor powered by an electrochemical-potential difference of specific ions across the cytoplasmic membrane. The H(+)-driven motor of Salmonella spins at ∼300 Hz, whereas the Na(+)-driven motor of marine Vibrio spp. can rotate much faster, up to 1700 Hz. A highly conserved motor structure consists of the MS ring, C ring, rod, and export apparatus. The C ring and the export apparatus show dynamic properties for exerting their functional activities. Various additional structures surrounding the conserved motor structure are observed in different bacterial species. In this review we summarize our current understanding of the structure, function, and assembly of the flagellar motor in Salmonella and marine Vibrio.

[1]  H. Berg,et al.  Adaptive remodelling by FliN in the bacterial rotary motor. , 2014, Journal of molecular biology.

[2]  C. Hughes,et al.  Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Jared R. Leadbetter,et al.  Structural diversity of bacterial flagellar motors , 2011, The EMBO journal.

[4]  C. Hill,et al.  Crystal Structure of the Flagellar Rotor Protein FliN from Thermotoga maritima , 2005, Journal of bacteriology.

[5]  R. Samudrala,et al.  The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. , 2007, Genes & development.

[6]  S. Kojima,et al.  Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor , 2014, Proceedings of the National Academy of Sciences.

[7]  J. Armitage,et al.  Quantification of flagellar motor stator dynamics through in vivo proton‐motive force control , 2013, Molecular microbiology.

[8]  Naoki Abe,et al.  Characterization of Lateral Flagella of Selenomonas ruminantium , 2011, Applied and Environmental Microbiology.

[9]  E. Bakker,et al.  The Escherichia coli MotAB proton channel unplugged. , 2006, Journal of molecular biology.

[10]  S. Norris,et al.  Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi , 2013, Proceedings of the National Academy of Sciences.

[11]  S. Kojima,et al.  Solubilization and purification of the MotA/MotB complex of Escherichia coli. , 2004, Biochemistry.

[12]  K. Namba,et al.  Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY , 2008, Proceedings of the National Academy of Sciences.

[13]  I. Kawagishi,et al.  Very fast flagellar rotation , 1994, Nature.

[14]  T. Minamino Protein export through the bacterial flagellar type III export pathway. , 2014, Biochimica et biophysica acta.

[15]  G. Rosser,et al.  Signal-dependent turnover of the bacterial flagellar switch protein FliM , 2010, Proceedings of the National Academy of Sciences.

[16]  F. Dahlquist,et al.  Structure of Flagellar Motor Proteins in Complex Allows for Insights into Motor Structure and Switching , 2012, The Journal of Biological Chemistry.

[17]  R. Belas,et al.  Biofilms, flagella, and mechanosensing of surfaces by bacteria. , 2014, Trends in microbiology.

[18]  K. Ottemann,et al.  Structural basis of FliG–FliM interaction in Helicobacter pylori , 2013, Molecular microbiology.

[19]  D. Blair,et al.  Function of Protonatable Residues in the Flagellar Motor of Escherichia coli: a Critical Role for Asp 32 of MotB , 1998, Journal of bacteriology.

[20]  Z. Zhou,et al.  Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. , 2010, Journal of molecular biology.

[21]  Yusuke V. Morimoto,et al.  The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor , 2013, Biophysics.

[22]  H. Berg,et al.  Successive incorporation of force-generating units in the bacterial rotary motor , 1984, Nature.

[23]  K. Hughes,et al.  Energy source of flagellar type III secretion , 2008, Nature.

[24]  Lawrence K. Lee,et al.  Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching , 2010, Nature.

[25]  Yusuke V. Morimoto,et al.  Common and distinct structural features of Salmonella injectisome and flagellar basal body , 2013, Scientific Reports.

[26]  Yusuke V. Morimoto,et al.  An energy transduction mechanism used in bacterial flagellar type III protein export , 2011, Nature communications.

[27]  H. Berg,et al.  Ultrasensitivity of an adaptive bacterial motor. , 2013, Journal of molecular biology.

[28]  Douglas J. Botkin,et al.  Intact Flagellar Motor of Borrelia burgdorferi Revealed by Cryo-Electron Tomography: Evidence for Stator Ring Curvature and Rotor/C-Ring Assembly Flexion , 2009, Journal of bacteriology.

[29]  Todd G. Smith,et al.  Sense and sensibility: flagellum-mediated gene regulation. , 2010, Trends in microbiology.

[30]  J. Armitage,et al.  Stoichiometry and Turnover of the Bacterial Flagellar Switch Protein FliN , 2014, mBio.

[31]  R. Macnab,et al.  FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity , 2000, Molecular microbiology.

[32]  Yusuke V. Morimoto,et al.  Distinct Roles of Highly Conserved Charged Residues at the MotA-FliG Interface in Bacterial Flagellar Motor Rotation , 2012, Journal of bacteriology.

[33]  K. Hughes,et al.  Rod-to-Hook Transition for Extracellular Flagellum Assembly Is Catalyzed by the L-Ring-Dependent Rod Scaffold Removal , 2014, Journal of bacteriology.

[34]  R. Macnab,et al.  How bacteria assemble flagella. , 2003, Annual review of microbiology.

[35]  M. Homma,et al.  Functional Reconstitution of the Na+-driven Polar Flagellar Motor Component of Vibrio alginolyticus* , 2000, The Journal of Biological Chemistry.

[36]  Brooke A. Jude,et al.  Role of FlgT in Anchoring the Flagellum of Vibrio cholerae , 2010, Journal of bacteriology.

[37]  S. Kojima,et al.  Interaction between Na+ ion and carboxylates of the PomA-PomB stator unit studied by ATR-FTIR spectroscopy. , 2009, Biochemistry.

[38]  R. Macnab,et al.  Peptidoglycan-Hydrolyzing Activity of the FlgJ Protein, Essential for Flagellar Rod Formation inSalmonella typhimurium , 1999, Journal of bacteriology.

[39]  V. Sourjik,et al.  Assembly and stability of flagellar motor in Escherichia coli , 2011, Molecular microbiology.

[40]  M. Homma,et al.  Interactions of MotX with MotY and with the PomA/PomB Sodium Ion Channel Complex of the Vibrio alginolyticus Polar Flagellum* , 2005, Journal of Biological Chemistry.

[41]  K. Thormann,et al.  Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR‐1 , 2009, Molecular microbiology.

[42]  H. Berg,et al.  A protonmotive force drives bacterial flagella. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[43]  H. Terashima,et al.  The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+‐driven flagella and required for stator formation , 2006, Molecular microbiology.

[44]  A. Roujeinikova,et al.  Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: Implications for peptidoglycan recognition , 2008, Proceedings of the National Academy of Sciences.

[45]  Katsumi Imada,et al.  Molecular motors of the bacterial flagella. , 2008, Current opinion in structural biology.

[46]  D J DeRosier,et al.  Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. , 1994, Journal of molecular biology.

[47]  R. Macnab,et al.  Interaction between FliE and FlgB, a Proximal Rod Component of the Flagellar Basal Body ofSalmonella , 2000, Journal of bacteriology.

[48]  G. Murphy,et al.  In situ structure of the complete Treponema primitia flagellar motor , 2006, Nature.

[49]  K. Oosawa,et al.  M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. , 1992, Journal of molecular biology.

[50]  M. Iwakura,et al.  Purification and characterization of the flagellar hook–basal body complex of Bacillus subtilis , 1997, Molecular microbiology.

[51]  K. Namba,et al.  Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export , 2008, Nature.

[52]  K. Namba,et al.  Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid , 1991, Science.

[53]  S. Kojima,et al.  Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na(+)-driven flagella of Vibrio alginolyticus. , 2011, Journal of molecular biology.

[54]  Yusuke V. Morimoto,et al.  Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body , 2014, Molecular microbiology.

[55]  S. Norris,et al.  Molecular Architecture of the Bacterial Flagellar Motor in Cells , 2014, Biochemistry.

[56]  Howard C. Berg,et al.  Adaptation at the output of the chemotaxis signalling pathway , 2012, Nature.

[57]  K. Namba,et al.  Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export , 2012, Molecular microbiology.

[58]  K. Namba,et al.  Interaction between FliJ and FlhA, Components of the Bacterial Flagellar Type III Export Apparatus , 2012, Journal of bacteriology.

[59]  Yusuke V. Morimoto,et al.  Interaction of the Extreme N-Terminal Region of FliH with FlhA Is Required for Efficient Bacterial Flagellar Protein Export , 2012, Journal of bacteriology.

[60]  Jie Yan,et al.  Three-Dimensional Structures of Pathogenic and Saprophytic Leptospira Species Revealed by Cryo-Electron Tomography , 2012, Journal of bacteriology.

[61]  S. Kojima,et al.  Contribution of Many Charged Residues at the Stator-Rotor Interface of the Na+-Driven Flagellar Motor to Torque Generation in Vibrio alginolyticus , 2014, Journal of bacteriology.

[62]  D. Blair,et al.  Architecture of the flagellar rotor , 2011, The EMBO journal.

[63]  F. Dahlquist,et al.  Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG. , 2012, Biochemistry.

[64]  H. Berg,et al.  The MotA protein of E. coli is a proton-conducting component of the flagellar motor , 1990, Cell.

[65]  Yusuke V. Morimoto,et al.  Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor , 2010, Molecular microbiology.

[66]  M. Göttfert,et al.  Characterization of Two Sets of Subpolar Flagella in Bradyrhizobium japonicum , 2006, Journal of bacteriology.

[67]  S. Shibata,et al.  Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation. , 2005, Microbiology.

[68]  H. Terashima,et al.  The Flagellar Basal Body-Associated Protein FlgT Is Essential for a Novel Ring Structure in the Sodium-Driven Vibrio Motor , 2010, Journal of bacteriology.

[69]  Yusuke V. Morimoto,et al.  Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus , 2014, Scientific Reports.

[70]  H. Terashima,et al.  Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT , 2013, Proceedings of the National Academy of Sciences.

[71]  D. DeRosier,et al.  The Three-Dimensional Structure of the Flagellar Rotor from a Clockwise-Locked Mutant of Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[72]  Ronald K. Taylor,et al.  Characterization of Two Outer Membrane Proteins, FlgO and FlgP, That Influence Vibrio cholerae Motility , 2009, Journal of bacteriology.

[73]  K. Namba,et al.  Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners , 2010, Proceedings of the National Academy of Sciences.

[74]  S. Kojima,et al.  Sodium‐dependent dynamic assembly of membrane complexes in sodium‐driven flagellar motors , 2009, Molecular microbiology.

[75]  Yusuke V. Morimoto,et al.  Load‐sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor , 2014, Molecular microbiology.

[76]  H. Berg,et al.  Restoration of torque in defective flagellar motors. , 1988, Science.

[77]  K. Namba,et al.  Mechanisms of type III protein export for bacterial flagellar assembly. , 2008, Molecular bioSystems.

[78]  Hiroto Takahashi,et al.  Exchange of rotor components in functioning bacterial flagellar motor. , 2010, Biochemical and biophysical research communications.

[79]  K. Namba,et al.  ATP-induced FliI hexamerization facilitates bacterial flagellar protein export. , 2009, Biochemical and biophysical research communications.

[80]  M. Homma,et al.  Hybrid-fuel bacterial flagellar motors in Escherichia coli , 2014, Proceedings of the National Academy of Sciences.

[81]  J. Armitage,et al.  The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Hirofumi Suzuki,et al.  Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. , 2004, Journal of molecular biology.

[83]  Grant J Jensen,et al.  Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni , 2014, MicrobiologyOpen.

[84]  K. Namba,et al.  Self-Assembly and Type III Protein Export of the Bacterial Flagellum , 2004, Journal of Molecular Microbiology and Biotechnology.

[85]  K. Namba,et al.  Suppressor Analysis of the MotB(D33E) Mutation To Probe Bacterial Flagellar Motor Dynamics Coupled with Proton Translocation , 2008, Journal of bacteriology.

[86]  L. Camarena,et al.  A Distant Homologue of the FlgT Protein Interacts with MotB and FliL and Is Essential for Flagellar Rotation in Rhodobacter sphaeroides , 2013, Journal of bacteriology.

[87]  L. Claret,et al.  Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly , 2003, Molecular microbiology.

[88]  Yusuke V. Morimoto,et al.  Proton‐conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella , 2010, FEBS letters.

[89]  K. Namba,et al.  Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB , 2009, Molecular microbiology.

[90]  Yusuke V. Morimoto,et al.  Structural Insight into the Rotational Switching Mechanism of the Bacterial Flagellar Motor , 2011, PLoS biology.

[91]  G. Wadhams,et al.  Stoichiometry and turnover in single, functioning membrane protein complexes , 2006, Nature.

[92]  D. Blair,et al.  Electrostatic interactions between rotor and stator in the bacterial flagellar motor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  G. Jensen,et al.  Architecture of the major component of the type III secretion system export apparatus , 2012, Nature Structural &Molecular Biology.

[94]  N. Hirota,et al.  Flagellar motors of alkalophilic bacillus are powered by an electrochemical potential gradient of Na+ , 1981 .

[95]  K. Namba,et al.  Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases , 2011, Nature Structural &Molecular Biology.

[96]  H. Berg,et al.  Dynamics of mechanosensing in the bacterial flagellar motor , 2013, Proceedings of the National Academy of Sciences.

[97]  Yusuke V. Morimoto,et al.  Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA. , 2013, Journal of biochemistry.

[98]  Shin-Ichi Aizawa,et al.  Abrupt changes in flagellar rotation observed by laser dark-field microscopy , 1990, Nature.

[99]  J. Armitage,et al.  Load-Dependent Assembly of the Bacterial Flagellar Motor , 2013, mBio.

[100]  Yusuke V. Morimoto,et al.  Roles of the extreme N‐terminal region of FliH for efficient localization of the FliH–FliI complex to the bacterial flagellar type III export apparatus , 2009, Molecular microbiology.