Numerical solution method for the dbar-equation in the plane

A fast method for solving ∂--equations of the form ∂-v = Tv- is presented, where v and T are complex-valued functions of two real variables. The multigrid method of Vainikko [Int. Soc. Anal. Appl. Comput. 5 (2000)] is adapted to the problem with a FFT implementation. Convergence with rate O(h) is proved for the method applied to equations of the form above. One-grid and two-grid versions of the method are implemented and their effectiveness is demonstrated on an application arising in electrical impedance tomography (EIT).

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[3]  Mark J. Ablowitz,et al.  On the evolution of packets of water waves , 1979, Journal of Fluid Mechanics.

[4]  Mark J. Ablowitz,et al.  A Multidimensional Inverse-Scattering Method , 1984 .

[5]  Thorsten Hohage,et al.  On the numerical solution of a three-dimensional inverse medium scattering problem , 2001 .

[6]  A. Fordy,et al.  Nonlinear Evolution Equations: Integrability and Spectral Methods , 1991 .

[7]  R. Coifman,et al.  Scattering, transformations spectrales et équations d'évolution non linéaire II , 1981 .

[8]  R. Novikov,et al.  On the range characterization for the two-dimensional attenuated x-ray transformation , 2002 .

[9]  Bünyamin Yildiz,et al.  On the inverse conductivity problem , 1998, Appl. Math. Comput..

[10]  Alexandru Tamasan,et al.  Reconstruction of Less Regular Conductivities in the Plane , 2001 .

[11]  Timo Eirola,et al.  Solution Methods for R-Linear Problems in Cn , 2003, SIAM J. Matrix Anal. Appl..

[12]  The associated evolution equations of the Schrodinger operator in the plane , 1994 .

[13]  Gennadi Vainikko,et al.  Periodic Integral and Pseudodifferential Equations with Numerical Approximation , 2001 .

[14]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[15]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[16]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[17]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[18]  R G Novikov,et al.  The $ \bar\partial$-equation in the multidimensional inverse scattering problem , 1987 .

[19]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[20]  Athanassios S. Fokas,et al.  The inverse scattering transform for multidimensional (2+1) problems , 1983 .

[21]  Samuli Siltanen,et al.  Direct Reconstructions of Conductivities from Boundary Measurements , 2002, SIAM J. Sci. Comput..

[22]  G. Temple,et al.  Generalized Analytic Functions , 1964 .

[23]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[24]  Adrian I. Nachman Multidimensional inverse scattering and nonlinear equations , 1988 .

[25]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[26]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[27]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[28]  Juan Antonio Barceló,et al.  Stability of the Inverse Conductivity Problem in the Plane for Less Regular Conductivities , 2001 .

[29]  Richard Beals,et al.  The D -bar approach to inverse scattering and nonlinear evolutions , 1986 .

[30]  Gennadi Vainikko,et al.  Multidimensional Weakly Singular Integral Equations , 1993 .

[31]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[32]  Yu Chen,et al.  A Fast, Direct Algorithm for the Lippmann–Schwinger Integral Equation in Two Dimensions , 2002, Adv. Comput. Math..

[33]  R. Novikov An inversion formula for the attenuated X-ray transformation , 2002 .

[34]  J. Leon,et al.  On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane , 1987 .

[35]  Kim Knudsen,et al.  A new direct method for reconstructing isotropic conductivities in the plane. , 2003, Physiological measurement.

[36]  K. Stewartson,et al.  On three-dimensional packets of surface waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  Athanassios S. Fokas,et al.  On the Inverse Scattering Transform for the Kadomtsev-Petviashvili Equation , 1983 .

[38]  G. Vainikko Fast Solvers of the Lippmann-Schwinger Equation , 2000 .

[39]  David Isaacson,et al.  A direct reconstruction algorithm for electrical impedance tomography , 2002, IEEE Transactions on Medical Imaging.