Topological derivative for multi‐scale linear elasticity models applied to the synthesis of microstructures

This paper proposes an algorithm for the synthesis/optimization of microstructures based on an exact formula for the topological derivative of the macroscopic elasticity tensor and a level set domain representation. The macroscopic elasticity tensor is estimated by a standard multi-scale constitutive theory where the strain and stress tensors are volume averages of their microscopic counterparts over a representative volume element. The algorithm is of simple computational implementation. In particular, it does not require artificial algorithmic parameters or strategies. This is in sharp contrast with existing microstructural optimization procedures and follows as a natural consequence of the use of the topological derivative concept. This concept provides the correct mathematical framework to treat topology changes such as those characterizing microstuctural optimization problems. The effectiveness of the proposed methodology is illustrated in a set of finite element-based numerical examples.Copyright © 2010 John Wiley & Sons, Ltd.

[1]  G. Feijoo,et al.  A new method in inverse scattering based on the topological derivative , 2004 .

[2]  Schulte,et al.  Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. , 1996, Physical review. B, Condensed matter.

[3]  Michael Hintermüller,et al.  Multiphase Image Segmentation and Modulation Recovery Based on Shape and Topological Sensitivity , 2009, Journal of Mathematical Imaging and Vision.

[4]  A. Zochowski Optimal Perforation Design in 2-Dimensional Elasticity , 1988 .

[5]  J. Auriault Effective macroscopic description for heat conduction in periodic composites , 1983 .

[6]  Robert Almgren,et al.  An isotropic three-dimensional structure with Poisson's ratio =−1 , 1985 .

[7]  Jan Sokolowski,et al.  Asymptotic analysis of shape functionals , 2003 .

[8]  Raúl A. Feijóo,et al.  Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem , 2007 .

[9]  J. Cea,et al.  The shape and topological optimizations connection , 2000 .

[10]  P. M. Naghdi,et al.  On continuum thermodynamics , 1972 .

[11]  J. Schröder,et al.  Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains , 1999 .

[12]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[13]  Yuri V. Vassilevski,et al.  On discrete boundaries and solution accuracy in anisotropic adaptive meshing , 2010, Engineering with Computers.

[14]  E. A. de Souza Neto,et al.  Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[16]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[17]  P. Royer,et al.  Double conductivity media: a comparison between phenomenological and homogenization approaches , 1993 .

[18]  D C D Speirs,et al.  An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. , 2008, Journal of biomechanics.

[19]  Krishnan Suresh,et al.  An efficient numerical method for computing the topological sensitivity of arbitrary‐shaped features in plate bending , 2009 .

[20]  Samuel Amstutz,et al.  Sensitivity analysis with respect to a local perturbation of the material property , 2006, Asymptot. Anal..

[21]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[22]  Raúl A. Feijóo,et al.  Sensitivity of the macroscopic elasticity tensor to topological microstructural changes , 2009 .

[23]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[24]  A. Boyde,et al.  Composite bounds on the elastic modulus of bone. , 2008, Journal of biomechanics.

[25]  S Burns,et al.  Negative Poisson's Ratio Materials. , 1987, Science.

[26]  N. Kikuchi,et al.  Optimal design of piezoelectric microstructures , 1997 .

[27]  Raúl A. Feijóo,et al.  Variational Foundations of Large Strain Multiscale Solid Constitutive Models: Kinematical Formulation , 2010 .

[28]  Pablo J. Blanco,et al.  An assessment of the Gurson yield criterion by a computational multi‐scale approach , 2009 .

[29]  M. Masmoudi,et al.  Crack detection by the topological gradient method , 2005 .

[30]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[31]  Ignacio Larrabide,et al.  Topological derivative: A tool for image processing , 2008 .

[32]  Masmoudi,et al.  Image restoration and classification by topological asymptotic expansion , 2006 .

[33]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[34]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[35]  R. Lakes,et al.  Response: Negative Poisson's Ratio Materials. , 1987, Science.

[36]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[37]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[38]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[39]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[40]  G. Allaire,et al.  Structural optimization using topological and shape sensitivity via a level set method , 2005 .

[41]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[42]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[43]  J. Mandel,et al.  Plasticité classique et viscoplasticité , 1972 .

[44]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[45]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[46]  Noboru Kikuchi,et al.  Design optimization method for compliant mechanisms and material microstructure , 1998 .

[47]  T. Belytschko,et al.  Topology optimization with implicit functions and regularization , 2003 .

[48]  M. Hintermüller,et al.  Electrical Impedance Tomography: from topology to shape , 2008 .

[49]  Sia Nemat-Nasser,et al.  Averaging theorems in finite deformation plasticity , 1999 .