A new prefilter design for discrete multiwavelet transforms

We propose a new prefilter design that combines the ideas of the conventional wavelet transforms and multiwavelet transforms. The prefilters are orthogonal but nonmaximally decimated. They are derived from a very natural calculation of multiwavelet transform coefficients. In this new prefilter design, multiple step discrete multiwavelet decomposition is taken into account. Our numerical examples (by taking care of the redundant prefiltering) indicate that the energy compaction ratio with the Geronimo, Hardin and Massopust (1994) 2 wavelet transform and our new prefiltering is better than the one with Daubechies D/sub 4/ wavelet transform.

[1]  Olivier Rioul,et al.  Fast algorithms for discrete and continuous wavelet transforms , 1992, IEEE Trans. Inf. Theory.

[2]  Peter N. Heller,et al.  The application of multiwavelet filterbanks to image processing , 1999, IEEE Trans. Image Process..

[3]  I. Daubechies,et al.  Regularity of refinable function vectors , 1997 .

[4]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[5]  Xiang-Gen Xia,et al.  Multirate filter banks with block sampling , 1996, IEEE Trans. Signal Process..

[6]  Peter N. Heller,et al.  Multiwavelet filter banks for data compression , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[7]  Xiang-Gen Xia,et al.  Design of prefilters for discrete multiwavelet transforms , 1996, IEEE Trans. Signal Process..

[8]  Martin Vetterli,et al.  Balanced multiwavelets , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Christopher Heil,et al.  Matrix Refinement Equations: Existence and Uniqueness , 1996 .

[10]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[11]  D. Hardin,et al.  Multiwavelet prefilters. 1. Orthogonal prefilters preserving approximation order p/spl les/2 , 1998 .

[12]  L. Hervé Multi-Resolution Analysis of Multiplicity d: Applications to Dyadic Interpolation , 1994 .

[13]  G. Strang,et al.  Orthogonal multiwavelets with vanishing moments , 1994 .

[14]  G. Strang,et al.  THE APPLICATION OF MULTIWAVELET FILTER BANKS TO IMAGE PROCESSING ∗ , 1995 .

[15]  Gilbert Strang,et al.  Short wavelets and matrix dilation equations , 1995, IEEE Trans. Signal Process..

[16]  S. L. Lee,et al.  WAVELETS OF MULTIPLICITY r , 1994 .

[17]  Christopher Heil,et al.  ERRATA TO: APPROXIMATION BY TRANSLATES OF REFINABLE FUNCTIONS , 1997 .

[18]  George C. Donovan,et al.  Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .

[19]  G. Strang,et al.  Approximation by translates of refinable functions , 1996 .

[20]  Xiang-Gen Xia,et al.  On sampling theorem, wavelets, and wavelet transforms , 1993, IEEE Trans. Signal Process..

[21]  Xiang-Gen Xia,et al.  Vector-valued wavelets and vector filter banks , 1996, IEEE Trans. Signal Process..

[22]  S. L. Lee,et al.  Wavelets in wandering subspaces , 1993 .

[23]  Xiang-Gen Xia,et al.  Wavelet coefficient computation with optimal prefiltering , 1994, IEEE Trans. Signal Process..

[24]  Akram Aldroubi,et al.  Oblique and biorthogonal multiwavelet bases with fast-filtering algorithms , 1995, Optics + Photonics.

[25]  A. Trous,et al.  The Discrete Wavelet Transform: Wedding the . , 1992 .

[26]  Truong Q. Nguyen,et al.  Lattice structure for multifilters derived from complex-valued scalar filter banks , 1996, Optics & Photonics.

[27]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .

[28]  George C. Donovan,et al.  Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .

[29]  V. Strela,et al.  Construction of multiscaling functions with approximation and symmetry , 1998 .

[30]  James T. Miller,et al.  Adaptive multiwavelet initialization , 1998, IEEE Trans. Signal Process..

[31]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[32]  J. Gotze,et al.  Multiwavelet transforms based on several scaling functions , 1994, Proceedings of IEEE-SP International Symposium on Time- Frequency and Time-Scale Analysis.

[33]  M. Vetterli,et al.  Time-varying filter banks and multiwavelets , 1994, Proceedings of IEEE 6th Digital Signal Processing Workshop.

[34]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[35]  Gilbert Strang,et al.  Orthogonal multiwavelets with vanishing moments , 1994, Defense, Security, and Sensing.

[36]  C. Chui,et al.  A study of orthonormal multi-wavelets , 1996 .

[37]  Josef A. Nossek,et al.  Algebraic design of discrete multiwavelet transforms , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.