Powers and Magnetization of Blazar Jets

In this work I review the observational constraints imposed on the energetics and magnetisation of quasar jets, in the context of theoretical expectations. The discussion is focused on issues regarding the jet production efficiency, matter content, and particle acceleration. I show that if the ratio of electron-positron-pairs to protons is of order 15, as is required to achieve agreement between jet powers computed using blazar spectral fits and those computed using radio-lobe calorimetry, the magnetization of blazar jets in flat-spectrum-radio-quasars (FSRQ) must be significant. This result favors the reconnection mechanism for particle acceleration and explains the large Compton-dominance of blazar spectra that is often observed, without the need to postulate very low jet magnetization.

[1]  M. Sikora,et al.  On the efficiency of jet production in FR II radio galaxies and quasars , 2016, 1612.07392.

[2]  M. Sikora,et al.  The power and production efficiency of blazar jets , 2016, 1607.08895.

[3]  College Park,et al.  Efficiency of thin magnetically arrested discs around black holes , 2015, 1508.05323.

[4]  Philip J. Armitage,et al.  ACCRETION DISK DYNAMO AS THE TRIGGER FOR X-RAY BINARY STATE TRANSITIONS , 2015, 1507.03996.

[5]  P. Petrucci,et al.  Warm and optically thick dissipative coronae above accretion disks , 2015, 1504.03160.

[6]  L. Sironi,et al.  Relativistic Jets Shine through Shocks or Magnetic Reconnection , 2015, 1502.01021.

[7]  G. Ghisellini,et al.  Fermi/LAT broad emission line blazars , 2015, 1501.03504.

[8]  M. Sikora,et al.  Magnetization of jets in luminous blazars , 2014, 1411.7331.

[9]  G. Ghisellini,et al.  The power of relativistic jets is larger than the luminosity of their accretion disks , 2014, Nature.

[10]  M. Sikora,et al.  RECONCILING MODELS OF LUMINOUS BLAZARS WITH MAGNETIC FLUXES DETERMINED BY RADIO CORE-SHIFT MEASUREMENTS , 2014, 1410.4571.

[11]  H. Falcke,et al.  The contribution of spin to jet-disk coupling in black holes , 2013, 1308.1437.

[12]  M. Sikora,et al.  MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI , 2013, 1301.5638.

[13]  A. Laor,et al.  Type 1 AGN at low z – III. The optical narrow-line ratios , 2012, 1210.6394.

[14]  N. V. Asari,et al.  CONSTRAINING JET PRODUCTION SCENARIOS BY STUDIES OF NARROW-LINE RADIO GALAXIES , 2012, 1210.2571.

[15]  M. Birkinshaw,et al.  PERIODIC STRUCTURE IN THE MEGAPARSEC-SCALE JET OF PKS 0637−752 , 2012, 1209.4637.

[16]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[17]  D. Thompson,et al.  Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars , 2011, 1108.1114.

[18]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[19]  M. Lister,et al.  FROM THE BLAZAR SEQUENCE TO THE BLAZAR ENVELOPE: REVISITING THE RELATIVISTIC JET DICHOTOMY IN RADIO-LOUD ACTIVE GALACTIC NUCLEI , 2011, 1107.5105.

[20]  Pas,et al.  On different types of instabilities in black hole accretion discs. Implications for X-ray binaries and AGN , 2011, 1102.3257.

[21]  R. Romani,et al.  CHARACTERISTICS OF GAMMA-RAY LOUD BLAZARS IN THE VLBA IMAGING AND POLARIMETRY SURVEY , 2010, 1010.5812.

[22]  B. Punsly HIGH JET EFFICIENCY AND SIMULATIONS OF BLACK HOLE MAGNETOSPHERES , 2010, 1012.1910.

[23]  M. Jarvis,et al.  Evidence for a maximum jet efficiency for the most powerful radio galaxies , 2010, 1010.0691.

[24]  G. Ghisellini,et al.  Compton rockets and the minimum power of relativistic jets , 2010, 1008.1982.

[25]  S.S.Komissarov Magnetic acceleration of relativistic jets , 2010, 1006.2242.

[26]  M. Lister,et al.  EXTENDED RADIO EMISSION IN MOJAVE BLAZARS: CHALLENGES TO UNIFICATION , 2010, 1001.0731.

[27]  Y. Lyubarsky Transformation of the Poynting flux into kinetic energy in relativistic jets , 2009, 0909.4819.

[28]  Cosmology,et al.  EFFICIENCY OF MAGNETIC TO KINETIC ENERGY CONVERSION IN A MONOPOLE MAGNETOSPHERE , 2009, 0901.4776.

[29]  J. Pringle,et al.  Accretion discs with strong toroidal magnetic fields , 2006, astro-ph/0612300.

[30]  J. Lasota,et al.  Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications , 2006, astro-ph/0604095.

[31]  Felix A. Aharonian,et al.  Klein-Nishina effects in the spectra of non-thermal sources immersed in external radiation fields , 2005, astro-ph/0504388.

[32]  Greg M. Madejski,et al.  Are Quasar Jets Dominated by Poynting Flux? , 2005, astro-ph/0502115.

[33]  M. Abramowicz Super-Eddington black hole accretion: Polish doughnuts and slim disks , 2004, astro-ph/0411185.

[34]  R. Narayan,et al.  Magnetically Arrested Disk : an Energetically Efficient Accretion Flow , 2003, astro-ph/0305029.

[35]  A. Janiuk,et al.  Radiation Pressure Instability Driven Variability in the Accreting Black Holes , 2002, astro-ph/0205221.

[36]  K. Blundell,et al.  The emission line—radio correlation for radio sources using the 7C Redshift Survey , 1999, astro-ph/9905388.

[37]  Super‐Eddington accretion discs around Kerr black holes , 1998, astro-ph/9802129.

[38]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[39]  Martin J. Rees,et al.  Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? , 1994 .

[40]  R. Saunders,et al.  Evidence for a common central-engine mechanism in all extragalactic radio sources , 1991, Nature.

[41]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.

[42]  B. Paczyński,et al.  Supercritical accretion disks around black holes , 1980 .

[43]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[44]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[45]  Robert E. Wilson,et al.  BLACK HOLES IN BINARY SYSTEMS , 1973 .

[46]  Н.И. Шакура,et al.  Black Holes in Binary Systems. Observational Appearance , 1973 .

[47]  Igor D. Novikov,et al.  Astrophysics of black holes. , 1973 .