The contraction method for recursive algorithms

In this paper we give an introduction to the analysis of algorithms by the contraction method. By means of this method several interesting classes of recursions can be analyzed as particular cases of our general framework. We introduce the main steps of this technique which is based on contraction properties of the algorithm with respect to suitable probability metrics. Typically the limiting distribution is characterized as a fixed point of a limiting operator on the class of probability distributions. We explain this method in the context of several “divide and conquer” algorithms. In the second part of the paper we introduce a new quite general model for branching dynamical systems and explain that the contraction method can be applied in this model. This model includes many classical examples of random trees and gives a general frame for further applications.

[1]  Ludger Rüschendorf,et al.  Analysis of recursive algorithms by the contraction method , 1996 .

[2]  U. Rösler A fixed point theorem for distributions , 1992 .

[3]  William F. Eddy,et al.  How Many Comparisons Does Quicksort Use? , 1995, J. Algorithms.

[4]  Hosam M. Mahmoud,et al.  Analysis of Quickselect: An Algorithm for Order Statistics , 1995, RAIRO Theor. Informatics Appl..

[5]  U. Rösler A limit theorem for "Quicksort" , 1991, RAIRO Theor. Informatics Appl..

[6]  Hsien-Kuei Hwang,et al.  The Cost Distribution of Queue-Mergesort, Optimal Mergesorts, and Power-of-2 Rules , 1999, J. Algorithms.

[7]  M. Cramer Stochastic Analysis of ‘Simultaneous Merge–Sort' , 1997, Advances in Applied Probability.

[8]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[9]  P. Hennequin Combinatorial Analysis of Quicksort Algorithm , 1989, RAIRO Theor. Informatics Appl..

[10]  Yves Guivarc'h,et al.  Sur une extension de la notion de loi semi-stable , 1990 .

[11]  P. Jagers GALTON-WATSON PROCESSES IN VARYING ENVIRONMENTS , 1974 .

[12]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[13]  Mireille Régnier A Limiting Distribution for Quicksort , 1989, RAIRO Theor. Informatics Appl..

[14]  G. Dall'aglio Sugli estremi dei momenti delle funzioni di ripartizione doppia , 1956 .

[15]  Michael Cramer Convergence of a branching type recursion with non-stationary immigration , 1997 .

[16]  H. Mahmoud Sorting: A Distribution Theory , 2000 .

[17]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[18]  Philippe Flajolet,et al.  Hypergeometrics and the Cost Structure of Quadtrees , 1995, Random Struct. Algorithms.

[19]  Wojciech Szpankowski,et al.  Quicksort Algorithm Again Revisited , 1999, Discret. Math. Theor. Comput. Sci..

[20]  Wansoo T. Rhee,et al.  A sharp deviation inequality for the stochastic traveling salesman problem , 1989 .

[21]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[22]  Ludger Rüschendorf,et al.  On the internal path length of d -dimensional quad trees , 1999 .

[23]  James Allen Fill,et al.  Total Path Length for Random Recursive Trees , 1999, Combinatorics, Probability and Computing.

[24]  Gaston H. Gonnet,et al.  Analytic variations on quadtrees , 2005, Algorithmica.

[25]  S. Rachev,et al.  Probability metrics and recursive algorithms , 1995, Advances in Applied Probability.

[26]  Svetlozar T. Rachev,et al.  Limit theorems for recursive algorithms , 1994 .

[27]  R. Durrett,et al.  Fixed points of the smoothing transformation , 1983 .

[28]  Helmut Prodinger,et al.  Bottom-up mergesort — A detailed analysis , 1995, Algorithmica.

[29]  Robert Sedgewick,et al.  Queue-Mergesort , 1993, Inf. Process. Lett..

[30]  Luc Devroye,et al.  An Analysis of Random d-Dimensional Quad Trees , 1990, SIAM J. Comput..

[31]  H. Mahmoud,et al.  Average-case analysis of multiple Quickselect: An algorithm for finding order statistics , 1996 .

[32]  Wojciech Szpankowski,et al.  Quicksort Again Revisited , 1998, RANDOM.

[33]  Ludger Rüschendorf,et al.  Convergence of two-dimensional branching recursions , 2001 .

[34]  P. Hadjicostas,et al.  Some properties of a limiting distribution in Quicksort , 1995 .

[35]  Philippe Flajolet,et al.  Mellin transforms and asymptotics , 1994, Acta Informatica.

[36]  Luc Devroye,et al.  Branching processes in the analysis of the heights of trees , 1987, Acta Informatica.

[37]  Ludger Rüschendorf,et al.  Convergence of a branching type recursion , 1996 .

[38]  C. A. R. Hoare Algorithm 63: partition , 1961, CACM.

[39]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[40]  S. Rachev,et al.  On the Rate of Convergence in the CLT with Respect to the Kantorovich Metric , 1994 .

[41]  D. Dufresne The Distribution of a Perpetuity, with Applications to Risk Theory and Pension Funding , 1990 .

[42]  C. A. R. Hoare,et al.  Algorithm 64: Quicksort , 1961, Commun. ACM.

[43]  R. Grübel,et al.  Asymptotic distribution theory for Hoare's selection algorithm , 1996, Advances in Applied Probability.

[44]  Svetlozar T. Rachev,et al.  Limiting Distribution of the Collision Resolution Interval , 1997 .

[45]  M. H. van Emden Increasing the efficiency of quicksort , 1970, CACM.

[46]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[47]  P. Bougerol,et al.  Stationarity of Garch processes and of some nonnegative time series , 1992 .

[48]  Michael Cramer A Note Concerning the Limit Distribution of the Quicksort Algorithm , 1996, RAIRO Theor. Informatics Appl..

[49]  Philippe Flajolet,et al.  Search costs in quadtrees and singularity perturbation asymptotics , 1994, Discret. Comput. Geom..

[50]  Tony Hoare,et al.  Algorithm 63‚ Partition; Algorithm 64‚ Quicksort; Algorithm 65‚ Find , 1961 .

[51]  B. Gnedenko,et al.  Limit distributions for sums of shrunken random variables , 1954 .

[52]  R. B. Hayward,et al.  Large Deviations for Quicksort , 1996, J. Algorithms.

[53]  Charles M. Goldie,et al.  Perpetuities and Random Equations , 1994 .

[54]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[55]  S. Graf Statistically self-similar fractals , 1987 .

[56]  M. Cramer Stochastic analysis of the Merge-Sort algorithm , 1997 .

[57]  Volkert Paulsen,et al.  THE MOMENTS OF FIND , 1997 .

[58]  Vladimir M. Zolotarev,et al.  Modern Theory of Summation of Random Variables , 1997 .

[59]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[60]  R. Burton,et al.  An L 2 convergence theorem for random affine mappings , 1995, Journal of Applied Probability.

[61]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[62]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[63]  Luc Devroye,et al.  A note on the height of binary search trees , 1986, JACM.

[64]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[65]  M. Arbeiter,et al.  Random recursive construction of self-similar fractal measures. The noncompact case , 1991 .

[66]  Helmut Prodinger,et al.  Comparisons in Hoare's Find Algorithm , 1998, Combinatorics, Probability and Computing.

[67]  Hosam M. Mahmoud Limiting Distributions for Path Lengths in Recursive Trees , 1991 .