Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation

[1]  Huan Wang,et al.  Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically , 2014, Applied Microbiology and Biotechnology.

[2]  C. Kumar,et al.  Artificial citrate operon and Vitreoscilla hemoglobin gene enhanced mineral phosphate solubilizing ability of Enterobacter hormaechei DHRSS , 2014, Applied Microbiology and Biotechnology.

[3]  Hikmet Geçkil,et al.  Effect of Vitreoscilla Hemoglobin and Culture Conditions on Production of Bacterial l-Asparaginase, an Oncolytic Enzyme , 2014, Applied Biochemistry and Biotechnology.

[4]  T. Sar,et al.  Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by “Vitreoscilla hemoglobin expressing” Escherichia coli , 2014, Bioscience, biotechnology, and biochemistry.

[5]  Gongli Zong,et al.  Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) , 2013, World Journal of Microbiology and Biotechnology.

[6]  K. Pagilla,et al.  Characterization of heme protein expressed by ammonia-oxidizing bacteria under low dissolved oxygen conditions , 2014, Applied Microbiology and Biotechnology.

[7]  Jianmei Su,et al.  Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis BMB171 can promote manganese(II) oxidation under oxygen-restricted conditions , 2014, Annals of Microbiology.

[8]  A. Bechthold,et al.  Development of Intergeneric Conjugal Gene Transfer System in Streptomyces diastatochromogenes 1628 and Its Application for Improvement of Toyocamycin Production , 2014, Current Microbiology.

[9]  P. Kallio,et al.  The responses of Vitreoscilla hemoglobin-expressing hybrid aspen (Populus tremula × tremuloides) exposed to 24-h herbivory: expression of hemoglobin and stress-related genes in exposed and nonorthostichous leaves , 2013, Journal of Plant Research.

[10]  Jun Feng,et al.  Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. , 2013, FEMS microbiology letters.

[11]  A. Howard,et al.  Crystallographic structure determination of B10 mutants of Vitreoscilla hemoglobin: role of Tyr29 (B10) in the structure of the ligand-binding site. , 2013, Acta crystallographica. Section F, Structural biology and crystallization communications.

[12]  K. Pagilla,et al.  Enhanced heme protein expression by ammonia-oxidizing communities acclimated to low dissolved oxygen conditions , 2013, Applied Microbiology and Biotechnology.

[13]  B. Stark,et al.  Enhancement of ethanol production from potato‐processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin , 2012, Letters in applied microbiology.

[14]  Jyh-Ming Wu,et al.  Lower Temperature Cultures Enlarge the Effects of Vitreoscilla Hemoglobin Expression on Recombinant Pichia pastoris , 2012, International journal of molecular sciences.

[15]  K. Pagilla,et al.  The Biochemistry of Vitreoscilla hemoglobin , 2012, Computational and structural biotechnology journal.

[16]  K. Dikshit,et al.  Recombinant E. coli expressing Vitreoscilla haemoglobin prefers aerobic metabolism under microaerobic conditions: A proteome-level study , 2012, Journal of Biosciences.

[17]  Shengbiao Hu,et al.  Promotion of spinosad biosynthesis by chromosomal integration of the Vitreoscilla hemoglobin gene in Saccharopolyspora spinosa , 2012, Science China Life Sciences.

[18]  Jyh-Ming Wu,et al.  Intracellular co-expression of Vitreoscilla hemoglobin enhances cell performance and β-galactosidase production in Pichia pastoris. , 2012, Journal of bioscience and bioengineering.

[19]  H. Kahraman,et al.  Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene , 2012, Applied Biochemistry and Microbiology.

[20]  Jia Wang,et al.  Vitreoscilla hemoglobin enhances ethanol production by Escherichia coli in a variety of growth media. , 2012 .

[21]  Z. Deng,et al.  Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes. , 2012, Enzyme and microbial technology.

[22]  H. Kahraman,et al.  Production of methionine γ- lyase in recombinant Citrobacter freundii bearing the hemoglobin gene. , 2011, BMB reports.

[23]  Feng Liu,et al.  Metabolic engineering of Aeromonas hydrophila 4AK4 for production of copolymers of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate. , 2011, Bioresource technology.

[24]  Alvaro R. Lara,et al.  Vitreoscilla hemoglobin expression in engineered Escherichia coli: improved performance in high cell-density batch cultivations. , 2011, Biotechnology journal.

[25]  K. Shanmugam,et al.  Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. , 2011, Bioresource technology.

[26]  Krishna R. Pagilla,et al.  Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla , 2011, Biotechnology Letters.

[27]  Zuoyan Zhu,et al.  Vitreoscilla Hemoglobin (VHb) Overexpression Increases Hypoxia Tolerance in Zebrafish (Danio rerio) , 2011, Marine Biotechnology.

[28]  Z. Rao,et al.  Enhanced Production of l-Arginine by Expression of Vitreoscilla Hemoglobin Using a Novel Expression System in Corynebacterium crenatum , 2011, Applied biochemistry and biotechnology.

[29]  Zheng-Tao Wang,et al.  [Regulation of Vitreoscilla hemoglobin on biosynthesis of astragaloside IV]. , 2011, Yao xue xue bao = Acta pharmaceutica Sinica.

[30]  O. Li,et al.  Constitutive expression of Vitreoscilla haemoglobin in Sphingomonas elodea to improve gellan gum production , 2011, Journal of applied microbiology.

[31]  K. Pagilla,et al.  Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose , 2010, Applied Microbiology and Biotechnology.

[32]  D. Webster,et al.  Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. , 2010, The Biochemical journal.

[33]  D. Webster,et al.  Functional implications of the proximal site hydrogen bonding network in Vitreoscilla hemoglobin (VHb): Role of Tyr95 (G5) and Tyr126 (H12) , 2008, FEBS letters.

[34]  K. Pagilla,et al.  Role of Hemoglobin in Improving Biodegradation of Aromatic Contaminants under Hypoxic Conditions , 2008, Journal of Molecular Microbiology and Biotechnology.

[35]  L. Moens,et al.  Diversity of Globin Function: Enzymatic, Transport, Storage, and Sensing* , 2008, Journal of Biological Chemistry.

[36]  C. Isarankura-Na-Ayudhya,et al.  Shedding Light on the Role of Vitreoscilla Hemoglobin on Cellular Catabolic Regulation by Proteomic Analysis , 2008, International journal of biological sciences.

[37]  S. Shioya,et al.  Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. , 2007, Journal of bioscience and bioengineering.

[38]  Lei Zhang,et al.  Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. , 2007, Biotechnology advances.

[39]  L. Bülow,et al.  An investigation of the peroxidase activity of Vitreoscilla hemoglobin , 2007, JBIC Journal of Biological Inorganic Chemistry.

[40]  N. Welsh,et al.  Role of TAB1 in nitric oxide-induced p38 activation in insulin-producing cells , 2006, International journal of biological sciences.

[41]  K. Pagilla,et al.  Comparison of 2-chlorobenzoic acid biodegradation in a membrane bioreactor by B. cepacia and B. cepacia bearing the bacterial hemoglobin gene. , 2006, Water research.

[42]  J. Gough,et al.  A phylogenomic profile of globins , 2006, BMC Evolutionary Biology.

[43]  A. Boffi,et al.  Interaction of Vitreoscilla hemoglobin with membrane lipids. , 2006, Biochemistry.

[44]  D. Webster,et al.  Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production , 2006, Journal of Industrial Microbiology and Biotechnology.

[45]  D. Webster,et al.  ArcA works with Fnr as a positive regulator of Vitreoscilla (bacterial) hemoglobin gene expression in Escherichia coli. , 2005, Microbiological research.

[46]  K. Pagilla,et al.  2‐Chlorobenzoate Biodegradation by Recombinant Burkholderia cepacia under Hypoxic Conditions in a Membrane Bioreactor , 2005, Water environment research : a research publication of the Water Environment Federation.

[47]  Hikmet Geçkil,et al.  Degradation of Benzene, Toluene and Xylene by Pseudomonas aeruginosa Engineered with the Vitreoscilla Hemoglobin Gene , 2005 .

[48]  Kyong-Tai Kim,et al.  Highly efficient protein expression and purification using bacterial hemoglobin fusion vector. , 2005, Plasmid.

[49]  D. Webster,et al.  Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into their chromosomes , 2005, Journal of Industrial Microbiology and Biotechnology.

[50]  L. Harvey,et al.  Heterologous protein production using the Pichia pastoris expression system , 2005, Yeast.

[51]  D. Webster,et al.  Mutational study of the bacterial hemoglobin distal heme pocket. , 2005, Biochemical and biophysical research communications.

[52]  L. Bülow,et al.  Gene expression profiling of Escherichia coli expressing double Vitreoscilla haemoglobin. , 2004, Journal of biotechnology.

[53]  K. Pagilla,et al.  Enhanced kinetics of genetically engineered Burkholderia cepacia: the role of vgb in the hypoxic metabolism of 2‐CBA , 2004, Biotechnology and bioengineering.

[54]  D. Webster,et al.  Enhancement of 2,4-dinitrotoluene biodegradation by Burkholderia sp. in sand bioreactors using bacterial hemoglobin technology , 2004, Biodegradation.

[55]  D. Webster,et al.  Structure-function studies of the Vitreoscilla hemoglobin D-region. , 2004, Biochemical and biophysical research communications.

[56]  A. Howard,et al.  Fusion protein system designed to provide color to aid in the expression and purification of proteins in Escherichia coli. , 2003, Plasmid.

[57]  D. Webster,et al.  Biodegradation of 2-Chlorobenzoate by Recombinant Burkholderia Cepacia Expressing Vitreoscilla Hemoglobin Under Variable Levels of Oxygen Availability , 2003, Biodegradation.

[58]  P. Kallio,et al.  Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. , 2003, FEMS microbiology reviews.

[59]  Hikmet Geçkil,et al.  Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stress. , 2003, Research in microbiology.

[60]  J. Hwangbo,et al.  Fusion protein of Vitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C. , 2003, Biotechnology and bioengineering.

[61]  D. Webster,et al.  Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (2,4-DNT) dioxygenase activity of Burkholderia and on 2,4-DNT degradation in two-phase bioreactors , 2003, Journal of Industrial Microbiology and Biotechnology.

[62]  A. Howard,et al.  Vitreoscilla Hemoglobin Binds to Subunit I of Cytochrome bo Ubiquinol Oxidases* , 2002, The Journal of Biological Chemistry.

[63]  P. R. Gardner,et al.  Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli , 2002, Molecular microbiology.

[64]  H. Cha,et al.  Enhanced detoxification of organophosphates using recombinant Escherichia coli with co-expression of organophosphorus hydrolase and bacterial hemoglobin , 2002, Biotechnology Letters.

[65]  Martino Bolognesi,et al.  Truncated Hemoglobins: A New Family of Hemoglobins Widely Distributed in Bacteria, Unicellular Eukaryotes, and Plants* 210 , 2002, The Journal of Biological Chemistry.

[66]  S. Mande,et al.  Chimeric Vitreoscilla Hemoglobin (VHb) Carrying a Flavoreductase Domain Relieves Nitrosative Stress in Escherichia coli: New Insight into the Functional Role of VHb , 2002, Applied and Environmental Microbiology.

[67]  I. Shih,et al.  The production of poly-(γ-glutamic acid) from microorganisms and its various applications , 2001 .

[68]  M. Bolognesi,et al.  Monomer-dimer equilibrium and oxygen binding properties of ferrous Vitreoscilla hemoglobin. , 2001, Biochemistry.

[69]  D. Webster,et al.  Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability , 2001, Journal of Industrial Microbiology and Biotechnology.

[70]  D. Webster,et al.  Genetic engineering to contain the Vitreoscilla hemoglobin gene enhances degradation of benzoic acid by Xanthomonas maltophilia. , 2000, Biotechnology and bioengineering.

[71]  D. Webster,et al.  Vitreoscilla hemoglobin enhances the first step in 2,4-dinitrotoluene degradation in vitro and at low aeration in vivo , 2000 .

[72]  A. Pesce,et al.  Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: a thermodynamic, kinetic and X-ray crystallographic study. , 1999, Journal of molecular biology.

[73]  M. Bolognesi,et al.  Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. , 1997, Structure.

[74]  K. Dikshit,et al.  Oxygen dependent regulation of Vitreoscilla globin gene: evidence for positive regulation by FNR. , 1994, Biochemical and biophysical research communications.

[75]  G. Eichhorn,et al.  Advances in Inorganic Biochemistry , 1994 .

[76]  D. Webster,et al.  The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. , 1992, Archives of biochemistry and biophysics.

[77]  D. Webster,et al.  Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinantEscherichia coli strain , 1990 .

[78]  D. Webster,et al.  Study of Vitreoscilla globin (vgb) gene expression and promoter activity in E. coli through transcriptional fusion. , 1990, Nucleic acids research.

[79]  J. Bailey,et al.  Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli , 1989, Journal of bacteriology.

[80]  D. Webster,et al.  Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. , 1988, Gene.

[81]  J. Bailey,et al.  Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli , 1988, Nature.

[82]  G. T. Tsao,et al.  Production of 2,3‐butanediol from D‐xylose by Klebsiella oxytoca ATCC 8724 , 1984, Biotechnology and bioengineering.

[83]  D. Webster,et al.  Purification and properties of NADH-cytochrome o Reductase from vitreoscilla. , 1980, The Journal of biological chemistry.

[84]  D. Webster,et al.  The purification and properties of cytochrome o from Vitreoscilla. , 1966, The Journal of biological chemistry.

[85]  Yansheng Zhang,et al.  Modulating betulinic acid production in Saccharomyces cerevisiae by managing the intracellular supplies of the co-factor NADPH and oxygen. , 2015, Journal of bioscience and bioengineering.

[86]  A. Kurt,et al.  Effect of Heavy Metals on Recombinant Pseudomonas aeruginosa carrying Vitreoscilla Hemoglobin Gene , 2014 .

[87]  Y. Suen,et al.  Expression of vitreoscilla hemoglobin in Aurantiochytrium sp. enhancesthe production of fatty acids and astaxanthin , 2013 .

[88]  P. Zhu,et al.  Improvement of Amorpha-4,11-diene Production by a Yeast-Conform Variant of Vitreoscilla Hemoglobin , 2012, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[89]  Zinan Wang,et al.  Functional expression of Vitreoscilla hemoglobin (VHb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism , 2009 .

[90]  D. Webster,et al.  Vitreoscilla hemoglobin aids respiration under hypoxic conditions in its native host. , 2009, Microbiological research.

[91]  D. Webster,et al.  Effects of Culture Conditions on Enhancement of 2,4‐Dinitrotoluene Degradation by BurkholderiaEngineered with the Vitreoscilla Hemoglobin Gene , 2001, Biotechnology progress.

[92]  D. Webster,et al.  Cloning and Expression of Vitreoscilla Hemoglobin Gene in Burkholderia sp. Strain DNT for Enhancement of 2,4‐Dinitrotoluene Degradation , 2000, Biotechnology progress.

[93]  D. Webster,et al.  Nitrite Inhibition of Vitreoscilla Hemoglobin (VHb) in Recombinant E.coli: Direct Evidence that VHb Enhances Recombinant Protein Production , 2000, Biotechnology progress.

[94]  D. Webster,et al.  Site-directed mutagenesis of bacterial hemoglobin: the role of glutamine (E7) in oxygen-binding in the distal heme pocket. , 1998, Archives of Biochemistry and Biophysics.

[95]  D. Webster Structure and function of bacterial hemoglobin and related proteins. , 1988, Advances in inorganic biochemistry.

[96]  Webster Da Structure and function of bacterial hemoglobin and related proteins. , 1988 .

[97]  S. Wakabayashi,et al.  Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla , 1986, Nature.