Use of plant colonizing bacteria as chassis for transfer of N₂-fixation to cereals.

[1]  Swapnil Bhatia,et al.  Functional optimization of gene clusters by combinatorial design and assembly , 2014, Nature Biotechnology.

[2]  D. Faure,et al.  An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations , 2014, Molecular ecology.

[3]  R. Dixon,et al.  Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli , 2014, Proceedings of the National Academy of Sciences.

[4]  L. Curatti,et al.  Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. , 2014, Plant science : an international journal of experimental plant biology.

[5]  D. Corcoran,et al.  Paired-End Analysis of Transcription Start Sites in Arabidopsis Reveals Plant-Specific Promoter Signatures[C][W] , 2014, Plant Cell.

[6]  Jens Kattge,et al.  A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms , 2014, Nature Communications.

[7]  Kathleen A. Curran,et al.  Design of synthetic yeast promoters via tuning of nucleosome architecture , 2014, Nature Communications.

[8]  C. Rogers,et al.  Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. , 2014, Journal of experimental botany.

[9]  L. Curatti,et al.  Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. , 2014, Metabolic engineering.

[10]  G. Church,et al.  Large-scale de novo DNA synthesis: technologies and applications , 2014, Nature Methods.

[11]  Christopher A. Voigt,et al.  Principles of genetic circuit design , 2014, Nature Methods.

[12]  R. Dixon,et al.  Biotechnological solutions to the nitrogen problem. , 2014, Current opinion in biotechnology.

[13]  H. Salis,et al.  Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria , 2014, bioRxiv.

[14]  Christopher A. Voigt,et al.  Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. , 2013, Current opinion in chemical biology.

[15]  R. Dixon,et al.  Correction: A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli , 2013, PLoS Genetics.

[16]  Vivek K. Mutalik,et al.  Composability of regulatory sequences controlling transcription and translation in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[17]  Ray Dixon,et al.  Using Synthetic Biology to Distinguish and Overcome Regulatory and Functional Barriers Related to Nitrogen Fixation , 2013, PloS one.

[18]  Christopher A. Voigt,et al.  Characterization of 582 natural and synthetic terminators and quantification of their design constraints , 2013, Nature Methods.

[19]  P. Poole,et al.  The plant microbiome , 2013, Genome Biology.

[20]  M. Mozzicafreddo,et al.  Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions , 2013, PloS one.

[21]  M. Udvardi,et al.  Transport and metabolism in legume-rhizobia symbioses. , 2013, Annual review of plant biology.

[22]  Claudine Franche,et al.  Biological nitrogen fixation in non-legume plants. , 2013, Annals of botany.

[23]  Drew Endy,et al.  Quantitative estimation of activity and quality for collections of functional genetic elements , 2013, Nature Methods.

[24]  Vivek K. Mutalik,et al.  Precise and reliable gene expression via standard transcription and translation initiation elements , 2013, Nature Methods.

[25]  Christopher A. Voigt,et al.  Ribozyme-based insulator parts buffer synthetic circuits from genetic context , 2012, Nature Biotechnology.

[26]  N. Ramankutty,et al.  Closing yield gaps through nutrient and water management , 2012, Nature.

[27]  Mauricio S. Antunes,et al.  Crosstalk between endogenous and synthetic components – synthetic signaling meets endogenous components , 2012, Biotechnology journal.

[28]  Tao Zhang,et al.  Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501. , 2012, Research in microbiology.

[29]  J. Setubal,et al.  Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes , 2012, BMC Genomics.

[30]  Christopher A. Voigt,et al.  Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca , 2012, Proceedings of the National Academy of Sciences.

[31]  Z. Yakhini,et al.  Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters , 2012, Nature Biotechnology.

[32]  D. Tilman,et al.  Global food demand and the sustainable intensification of agriculture , 2011, Proceedings of the National Academy of Sciences.

[33]  P. Poole,et al.  The rules of engagement in the legume-rhizobial symbiosis. , 2011, Annual review of genetics.

[34]  T. Hurek,et al.  Living inside plants: bacterial endophytes. , 2011, Current opinion in plant biology.

[35]  A. Good,et al.  Future Prospects for Cereals That Fix Nitrogen , 2011, Science.

[36]  J. W. Peters,et al.  Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii , 2011, Journal of bacteriology.

[37]  Joseph H. Davis,et al.  Design, construction and characterization of a set of insulated bacterial promoters , 2010, Nucleic acids research.

[38]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[39]  Christopher A. Voigt,et al.  Automated Design of Synthetic Ribosome Binding Sites to Precisely Control Protein Expression , 2009, Nature Biotechnology.

[40]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[41]  Christopher A. Voigt,et al.  Synthesis of methyl halides from biomass using engineered microbes. , 2009, Journal of the American Chemical Society.

[42]  J. Vanderleyden,et al.  Wheat growth promotion through inoculation with an ammonium-excreting mutant of Azospirillum brasilense , 2009, Biology and Fertility of Soils.

[43]  Jean Peccoud,et al.  Gene synthesis demystified. , 2009, Trends in biotechnology.

[44]  Drew Endy,et al.  Determination of cell fate selection during phage lambda infection , 2008, Proceedings of the National Academy of Sciences.

[45]  Zhanglin Lin,et al.  Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501 , 2008, Proceedings of the National Academy of Sciences.

[46]  J. Galloway,et al.  Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions , 2008, Science.

[47]  E. Jayamani,et al.  Energy Conservation via Electron-Transferring Flavoprotein in Anaerobic Bacteria , 2007, Journal of bacteriology.

[48]  D. Endy Foundations for engineering biology , 2005, Nature.

[49]  D. Endy,et al.  Refactoring bacteriophage T7 , 2005, Molecular systems biology.

[50]  L. Curatti,et al.  Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Edgren,et al.  The fixABCX Genes in Rhodospirillum rubrum Encode a Putative Membrane Complex Participating in Electron Transfer to Nitrogenase , 2004, Journal of bacteriology.

[52]  J. Vanderleyden,et al.  Phenotypic Changes Resulting from Distinct Point Mutations in the Azospirillum brasilense glnA Gene, Encoding Glutamine Synthetase , 2003, Applied and Environmental Microbiology.

[53]  N. Desnoues,et al.  Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. , 2003, Microbiology.

[54]  P. Oger,et al.  Engineering bacterial competitiveness and persistence in the phytosphere. , 2002, Molecular plant-microbe interactions : MPMI.

[55]  A. Zeng,et al.  Effect of Oxygen on Formation and Structure ofAzotobacter vinelandii Alginate and Its Role in Protecting Nitrogenase , 2000, Applied and Environmental Microbiology.

[56]  M. Drummond,et al.  The Basis of Ammonium Release in nifLMutants of Azotobacter vinelandii , 1999, Journal of bacteriology.

[57]  R. Poole,et al.  Respiratory Protection of Nitrogenase Activity in Azotobacter vinelandii—Roles of the Terminal Oxidases , 1997, Bioscience reports.

[58]  M. Savka,et al.  Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource , 1997, Nature Biotechnology.

[59]  P. Oger,et al.  Genetically engineered plants producing opines alter their biological environment , 1997, Nature Biotechnology.

[60]  E. Triplett Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots , 1996, Plant and Soil.

[61]  J. Kim,et al.  The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen‐mediated inactivation of nitrogenase in vitro and in vivo , 1994, Molecular microbiology.

[62]  C. Kitts,et al.  Azorhizobium caulinodans respires with at least four terminal oxidases , 1994, Journal of bacteriology.

[63]  J. Oelze,et al.  Identification of a new class of nitrogen fixation genes in Rhodobacter capsalatus: a putative membrane complex involved in electron transport to nitrogenase , 1993, Molecular and General Genetics MGG.

[64]  C. Kennedy,et al.  Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen , 1992, Applied and environmental microbiology.

[65]  R. Poole,et al.  Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air , 1990, Journal of bacteriology.

[66]  W. Brill,et al.  Electron transport to nitrogenase. Purification and characterization of pyruvate:flavodoxin oxidoreductase. The nifJ gene product. , 1983, The Journal of biological chemistry.

[67]  R. Dixon,et al.  Genetic Transfer of Nitrogen Fixation from Klebsiella pneumoniae to Escherichia coli , 1972, Nature.

[68]  J. Riechmann,et al.  Specification of floral organs in Arabidopsis. , 2014, Journal of experimental botany.

[69]  J. Simmonds Community matters: A history of Biological Nitrogen Fixation and Nodulation research, 1965 to 1995 , 2007 .

[70]  John D. Scott,et al.  Azorhizobium caulinodans electron-transferring flavoprotein N electrochemically couples pyruvate dehydrogenase complex activity to N2 fixation. , 2004, Microbiology.

[71]  P. Murphy,et al.  Opines and Opine-Like Molecules Involved in Plant-Rhizobiaceae Interactions , 1998 .