10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell

Thin-film solar cells made with amorphous silicon (a-Si:H) or organic semiconductors are considered as promising renewable energy sources due to their low manufacturing cost and light weight. However, the efficiency of single-junction a-Si:H or organic solar cells is typically <10%, insufficient for achieving grid parity. Here we demonstrate an efficient double-junction photovoltaic cell by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blend film as a back cell on planar glass substrates. Monolithic integration of 6.0% efficienct a-Si:H and 7.5% efficient polymer:fullerene blend solar cells results in a power conversion efficiency of 10.5%. Such high-efficiency thin-film tandem cells can be achieved by optical management and interface engineering of fully optimized high-performance front and back cells without sacrificing photovoltaic performance in both cells.

[1]  C. Ballif,et al.  New progress in the fabrication of n–i–p micromorph solar cells for opaque substrates , 2013 .

[2]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[3]  Y. Park,et al.  High Efficiency Inorganic/Organic Hybrid Tandem Solar Cells , 2012, Advanced materials.

[4]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[5]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[6]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[7]  P. Buehlmann,et al.  Limiting factors in the fabrication of microcrystalline silicon solar cells and microcrystalline/amorphous (‘micromorph’) tandems , 2009 .

[8]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[9]  V. Dalal,et al.  Novel Hybrid Amorphous/Organic Tandem Junction Solar Cell , 2013, IEEE Journal of Photovoltaics.

[10]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[11]  Valentin D. Mihailetchi,et al.  Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies , 2008 .

[12]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[13]  Davide Bartesaghi,et al.  Device physics of polymer:fullerene bulk heterojunction solar cells , 2016 .

[14]  A. Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Photovoltaic Science and Engineering , 2005 .

[15]  Tze-Chiang Chen,et al.  Efficiency enhancement of a-Si:H single junction solar cells by a-Ge:H incorporation at the p+ a-SiC:H/transparent conducting oxide interface , 2011 .

[16]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[17]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[18]  Yang Yang,et al.  Synthesis of 5 H ‐ Dithieno [ 3 , 2 ‐ b : 2 ′ , 3 ′ ‐ d ] pyran as an Electron-Rich Building Block for Donor − Acceptor Type Low-Bandgap Polymers , 2013 .

[19]  Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts , 2014 .

[20]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[21]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[22]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[23]  Yongli Gao,et al.  High-efficiency inverted polymer solar cells with double interlayer. , 2012, ACS applied materials & interfaces.

[24]  Arvind Shah,et al.  Thin-Film Silicon Solar Cells , 2010 .

[25]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .