Structure-preserving visualisation of high dimensional single-cell datasets

[1]  P. Carmeliet,et al.  Phenotype molding of stromal cells in the lung tumor microenvironment , 2018, Nature Medicine.

[2]  Chengzhong Ye,et al.  Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis , 2018, Nature Medicine.

[3]  S. Datta,et al.  Predicting survival times for neuroblastoma patients using RNA-seq expression profiles , 2018, Biology Direct.

[4]  Mingyao Li,et al.  Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease , 2018, Science.

[5]  M. Goddard,et al.  Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity , 2018, Cardiovascular research.

[6]  Dennis Wolf,et al.  Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis , 2018, Circulation research.

[7]  Pravesh Kothari,et al.  An Analysis of the t-SNE Algorithm for Data Visualization , 2018, COLT.

[8]  Manfred K. Warmuth,et al.  A more globally accurate dimensionality reduction method using triplets , 2018, ArXiv.

[9]  Daniel S. Kermany,et al.  Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning , 2018, Cell.

[10]  Reinhard Dummer,et al.  High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy , 2018, Nature Network Boston.

[11]  Michael Gertz,et al.  Intrinsic t-Stochastic Neighbor Embedding for Visualization and Outlier Detection - A Remedy Against the Curse of Dimensionality? , 2017, SISAP.

[12]  A. Condon,et al.  Interpretable dimensionality reduction of single cell transcriptome data with deep generative models , 2017, bioRxiv.

[13]  Z. Bar-Joseph,et al.  Using neural networks for reducing the dimensions of single-cell RNA-Seq data , 2017, Nucleic acids research.

[14]  Sepp Hochreiter,et al.  Self-Normalizing Neural Networks , 2017, NIPS.

[15]  G. Nolan,et al.  High-resolution myogenic lineage mapping by single-cell mass cytometry , 2017, Nature Cell Biology.

[16]  M. Elowitz,et al.  Challenges and emerging directions in single-cell analysis , 2017, Genome Biology.

[17]  Yi Yao,et al.  Gating mass cytometry data by deep learning , 2016, bioRxiv.

[18]  Lucas Beyer,et al.  In Defense of the Triplet Loss for Person Re-Identification , 2017, ArXiv.

[19]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[20]  Bo Wang,et al.  Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning , 2016, Nature Methods.

[21]  A. Regev,et al.  Revealing the vectors of cellular identity with single-cell genomics , 2016, Nature Biotechnology.

[22]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[23]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[24]  G. Nolan,et al.  Mass Cytometry: Single Cells, Many Features , 2016, Cell.

[25]  G. Nolan,et al.  Automated Mapping of Phenotype Space with Single-Cell Data , 2016, Nature Methods.

[26]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[27]  Aleksandra A. Kolodziejczyk,et al.  Classification of low quality cells from single-cell RNA-seq data , 2016, Genome Biology.

[28]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[29]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[30]  Nir Ailon,et al.  Deep Metric Learning Using Triplet Network , 2014, SIMBAD.

[31]  Gregory R. Koch,et al.  Siamese Neural Networks for One-Shot Image Recognition , 2015 .

[32]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[33]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[34]  Junhyong Kim,et al.  The promise of single-cell sequencing , 2013, Nature Methods.

[35]  R. Sandberg Entering the era of single-cell transcriptomics in biology and medicine , 2013, Nature Methods.

[36]  R Zenobi,et al.  Single-Cell Metabolomics: Analytical and Biological Perspectives , 2013, Science.

[37]  Stephen R Quake,et al.  Dissecting genomic diversity, one cell at a time , 2013, Nature Methods.

[38]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[39]  Sean C. Bendall,et al.  viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia , 2013, Nature Biotechnology.

[40]  Sean C. Bendall,et al.  Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum , 2011, Science.

[41]  Laurens van der Maaten,et al.  Learning a Parametric Embedding by Preserving Local Structure , 2009, AISTATS.

[42]  T. Yamano A generalization of the Kullback-Leibler divergence and its properties , 2009, 0902.1898.

[43]  Michael R. Hunsaker,et al.  The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. , 2008, Behavioral neuroscience.

[44]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[45]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[46]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[47]  Yann LeCun,et al.  Learning a similarity metric discriminatively, with application to face verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[48]  Joel S. Parker,et al.  Adjustment of systematic microarray data biases , 2004, Bioinform..

[49]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..