A fluorescent probe for fluoride ion based on 2-aminopyridyl-bridged calix(6)arene

[1]  Philip A. Gale,et al.  Anion Receptor Chemistry , 2016 .

[2]  E. Alcalde,et al.  Bis(imidazolium)-calix[4]arene receptors for anion binding. , 2009, The Journal of organic chemistry.

[3]  T. Gunnlaugsson,et al.  Bidirectional photoinduced electron-transfer quenching is observed in 4-amino-1,8-naphthalimide-based fluorescent anion sensors. , 2008, The Journal of organic chemistry.

[4]  F. Santoyo-González,et al.  Synthesis of calixarene-based cavitands and nanotubes by click chemistry. , 2008, The Journal of organic chemistry.

[5]  Philip A. Gale,et al.  Anion receptors based on organic frameworks: highlights from 2005 and 2006. , 2008, Chemical Society reviews.

[6]  Duong Tuan Quang,et al.  Calixarene-derived fluorescent probes. , 2007, Chemical reviews.

[7]  Philip A. Gale,et al.  Isophthalamides and 2,6-dicarboxamidopyridines with pendant indole groups: a 'twisted' binding mode for selective fluoride recognition. , 2007, Chemical communications.

[8]  T. Gunnlaugsson,et al.  Selective fluorescent sensing of chloride , 2007 .

[9]  Shang Gao,et al.  Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer. , 2007, The Journal of organic chemistry.

[10]  Xianshun Zeng,et al.  Efficient synthesis and host-guest properties of a new class of calix[6]azacryptands. , 2006, The Journal of organic chemistry.

[11]  Philip A. Gale,et al.  Structural and molecular recognition studies with acyclic anion receptors. , 2006, Accounts of chemical research.

[12]  J. Lee,et al.  A fluoride-selective PCT chemosensor based on formation of a static pyrene excimer. , 2005, Organic letters.

[13]  H. Tian,et al.  A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism , 2005 .

[14]  Chuan-feng Chen,et al.  A Highly Selective Fluorescent Chemosensor for H2PO4– Based on a Calix[4]arene Tetraamide Derivative , 2005 .

[15]  Viruthachalam Thiagarajan,et al.  A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways. , 2005, Organic letters.

[16]  T. Gunnlaugsson,et al.  Fluorescent PET chemosensors for lithium , 2004 .

[17]  T. Gunnlaugsson,et al.  Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. , 2004, Organic & biomolecular chemistry.

[18]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[19]  S. J. Loeb,et al.  Amide based receptors for anions , 2003 .

[20]  Md. Alamgir Hossain,et al.  Anion receptors: a new class of amide/quaternized amine macrocycles and the chelate effect. , 2003, Inorganic chemistry.

[21]  Jim-Min Fang,et al.  A novel phosphate chemosensor utilizing anion-induced fluorescence change. , 2002, Organic letters.

[22]  E. Garcı́a-España,et al.  Fluorescent Chemosensors Containing Polyamine Receptors , 2000 .

[23]  H. Schneider,et al.  Principles and Methods in Supramolecular Chemistry , 2000 .

[24]  P. Beer,et al.  Synthesis and anion coordination chemistry of new calix[4]arene pyridinium receptors , 2000 .

[25]  V. Balzani,et al.  Anion recognition and luminescent sensing by new ruthenium(II) and rhenium(I) bipyridyl calix[4]diquinone receptors , 1999 .

[26]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[27]  C. Gutsche,et al.  Conformational characteristics of p-tert-butylcalix[6]arene ethers , 1994 .

[28]  C. Fyfe,et al.  Chapter 1 Nuclear magnetic resonance of organic charge-transfer complexes , 1969 .